如图所示,抛物线y=1 2x² bx c与y轴交于点c(0,4)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:05:56
如图所示,抛物线y=1 2x² bx c与y轴交于点c(0,4)
如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

√(1)、由y=x2-1知A(-1,0)、B(1,0)、C(0,-1).(2)、由A(-1,0)、B(1,0)、C(0,-1)可求出BC直线为y=x-1,从而设AP直线为y=x+b,将A(-1,0)代

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

求经过抛物线y=12x

∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式

已知二次函数y=2x平方的图象如图所示,直线y=2与抛物线交于a.b两点,则三角形aob面积?

=2*2/2=2希望我的回答能帮助你,在我回答的右上角点击【采纳答案】,

已知抛物线y=-x²+ax+b-b²的顶点在抛物线y=4x²+4x+19/12上.求实数a

抛物线y=-x^2+ax+b-b^2的顶点x=a/2y=b-b^2+a^2/4代入抛物线y=4x^2+4x+19/12得b-b^2+a^2/4=4*a^2/4+4*a/2+19/12=a^2+2a+1

如图所示,已知抛物线 Y=1/4X的平方-X+K 的图像与Y轴相交于点B(0,1),点C(M,N)在该抛物线图像上,

离殇Q7:∵点B(0,1)在y=1/4x²-x+k的图象上∴1=(1/4)×0²-0+k∴k=1∴抛物线的解析式为:y=1/4x²-x+1即y=1/4(x-2)²

如图所示,已知直线y=1 /2x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交

令AB的中点为N,l为其中垂线(3)中AC为公共底,只须其上的高h=3H/4, 其中H为B与AC的距离其余见图

如图所示已知直线y=-1/2x+2与抛物线y=a(x+2)相交于A,B两点,点A在y轴上,M为抛物线的顶点.

第一问:根据抛物线方程可知点M坐标为(-2,0),根据直线方程可设点坐标为(x,2-x/2).则L=根号下(x+2)^2+(2-x/2)^2再问:需要取值范围再答:把直线方程带入区县方程可得ax^2+

如图所示,抛物线y=-x2+2x+3与x轴交于A、B两点,直线BD的函数表达式为y=- 3 x+3 3 ,抛物线的对称轴

答:(1)抛物线方程y=-x2+2x+3,令y=0,x1=-1,x2=3;令x=0,y=3故点A(-1,0),点B(3,0),点C(0,3)(2)BD直线为y=-√3x+3√3,BD与x轴的夹角为12

已知抛物线y=-x^2+ax+b-b^2的顶点在抛物线y=4x^2+4x+19/12上

抛物线y=-x^2+ax+b-b^2的顶点x=a/2y=b-b^2+a^2/4代入抛物线y=4x^2+4x+19/12得b-b^2+a^2/4=4*a^2/4+4*a/2+19/12=a^2+2a+1

如图所示,抛物线y=-x2+4x+5与x轴交于A、B两点,与y轴交于D点,抛物线的顶点为C,求四边形ABCD的面积.

如图,对称轴CE交x轴于点E,连接DE.抛物线y=-x2+4x+5中,令y=0,则-x2+4x+5=0,即-(x-5)(x+1)=0,解得x=5,x=-1;∴A(-1,0),B(5,0);令x=0,得

如图所示:抛物线L1:y=-x^2-2x+3交x轴与A,B两点,叫y轴于点M点.

(1)令y=0时,得-x^2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(

如图所示,已知抛物线y=x平方-1与x轴交与A,B俩点,与y轴交与点C.

解(1)抛物线y=x平方-1与x轴交与A,B俩点,与y轴交与点C令X=0则Y=-1则C(0,-1)令Y=0则X¹=1X²=-1则A(1,0)B(-1,0)或A(-1,0)B(1,0

如图所示,已知直线y=2分之1x与抛物线y=ax²+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线

(1)求这个抛物线的解析式;抛物线y=ax²+b(a≠0)A(-4,-2),B(6,3)两点代入后-2=16a+b3=36a+b两式相减5=20a,即a=1/4b=-6抛物线y=ax

如图所示,已知直线l:y=2x-4交抛物线y^2=4x于A、B两点,试在抛物线AOB这段曲线上求一

给点时间,好吗?再答:你在草稿纸上,画下大致图像,要求最大面积,只需在曲线上找出距直线AB最远的点设与直线AB平行的直线方程为y=2x+b,联立y^2=4x,得4x^2+(4b-4)x+b^2=0当方

如图所示,抛物线y=-x 2 +2x+3与x轴交于A、B两点,直线BD的函数表达式为y=- x+3 ,抛物线的对称轴l与

(1)令,解得:,∴A(-1,0),B(3,0)∵∴抛物线的对称轴为直线x=1将x=1代入,得∴。(2)①在Rt△ACE中,tan∠CAE=∴∠CAE=60°,由抛物线的对称性可知l是线段AB的垂直平

已知抛物线y=4/1X+1的图像如图所示.(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴于点B.若

这是2012漳州中考题,原题共三问,本题的解答如下:  江苏吴云超解答 供参考!