如图所示,抛物线y=-x² 5x n经过点a(1,0),与x轴的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:59:44
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式
(1)解方程组y=x2y=2x得x=0y=0或x=2y=4,所以A点坐标为(2,4);(2)存在.作AB⊥x轴于B点,如图,当PB=OB时,△AOP是以OP为底的等腰三角形,而A(2,4),所以P点坐
∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.
式子中如果根号m^2表示二次根号下m的话,由题意得,因为OA=OB,所以抛物线对称轴是x轴,所以对称轴:5-二次根号下m=0,所以m=25,代入可得解析式y=(-1/2)x^2+22,对称轴x=0,由
解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有
1. 相切联立方程 y=x^2-2x y=x+bx^2-3x-b=0 有唯一
(1)∵抛物线开口向下,∴a<0,∵对称轴x=-b2a=-1,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有两个交点,∴△=b2-4ac>0;(2)证明:∵抛物线的顶点在x轴上
如图知,抛物线y=ax2+2ax+a2+2过点(1,0)∴a+2a+a2+2=0,a<0,解得a=-1或-2,∵抛物线与x轴交于两点,∴△=4a2-4a(a2+2)>0,a<0,解得,a<-1,∴a=
关于y轴对称就是x换成-xy=-(-x)²-4(-x)+5=-x²+4x+5
如图,对称轴CE交x轴于点E,连接DE.抛物线y=-x2+4x+5中,令y=0,则-x2+4x+5=0,即-(x-5)(x+1)=0,解得x=5,x=-1;∴A(-1,0),B(5,0);令x=0,得
抛物线y=-5x^2+4x+7与y轴的交点坐标x=0时y=7抛物线y=-5x^2+4x+7与y轴的交点坐标是(0,7)
(1)令y=0时,得-x^2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(
给点时间,好吗?再答:你在草稿纸上,画下大致图像,要求最大面积,只需在曲线上找出距直线AB最远的点设与直线AB平行的直线方程为y=2x+b,联立y^2=4x,得4x^2+(4b-4)x+b^2=0当方
(1)令,解得:,∴A(-1,0),B(3,0)∵∴抛物线的对称轴为直线x=1将x=1代入,得∴。(2)①在Rt△ACE中,tan∠CAE=∴∠CAE=60°,由抛物线的对称性可知l是线段AB的垂直平
y = -x^2-2*x+5
向左移2个单位,向下移10个单位第一个抛物线可以化为y=2x?-4x+5=2(x-1)?+3第二个抛物线可以化为:y=2x?+4x-5=2(x+1)?-7所以从第一个抛物线平移到第二个抛物线时,x的坐
y=f(x)关于y轴对称的是y=f(-x).所以只需要用-x代替x即可y=-(-x)^2-4(-x)+5=-x^2+4x+5
y=-2(x+5x/2-7/2)=-2[(x+5/4)^2-81/16]=-2(x+5/4)^2+81/8因为开口向下,所以当x>-5/4时,y随x增大而减小再问:y≥5/4可以吗再答:大于等于号也是
∵抛物线y=ax2+2ax+a2+2的对称轴为x=-2a2a=-1,∴该抛物线与x轴的另一个交点到x=-1的距离为2,∴抛物线y=ax2+2ax+a2+2与x轴的另一个交点坐标为(1,0).故选B.