如图所示,已知直线y=x 3的图象与x,y轴交于A,,B两点 分成相等两部分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:31:00
根据题意得f′(x)=3x2,设切点(m,n)则曲线y=f(x)上点(m,n)处的切线的斜率k=3m2,∴3m2=1,m=±33,故切点的坐标有两解.由直线的方程可得中斜率等于1的直线有两条,故选C.
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
由题意令x+y−2=0y=x3解得交点坐标是(1,1)故由直线x+y-2=0,曲线y=x3以及x轴围成的图形的面积为∫01x3dx+∫12(2-x)dx=14x4|10+(2x−12x2)|21=14
对c求导,y`=3x^2-1,Q处的切线平行于y=11x-1,说明y`=3x^2-1=11,x=±2,Q为(2,8)或(-2,-4),切线方程分别为y=11x-14,y=11x+18
由题意,得斜率=3×1平方=3所以切线方程为y-1=3(x-1)即y=3x-2
设切点P(x0,x0)∵直线y=x是曲线y=x3-3x2+ax的切线∴切线的斜率为1∵y=x3-3x2+ax∴y′︳x=x0=3x2-6x+a︳x=x0=3x02-6x0+a=1①∵点P在曲线上∴x0
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
由图知方程f(x)=0有两个相等的实根x1=x2=0,于是b=0,∴f(x)=x2(x+a),有274=∫−a0[0−(x3+ax2)]dx=−(x44+ax33).−a0=a412,∴a=±3.又-
答:(1).f(x)定义域为x∈R.f'(x)=3x²+2ax,f'(1)=3+2a=-3,所以a=-3f(1)=1-3+b=0,所以b=2所以a=-3,b=2.(2)f(x)=x³
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
依题意,作图如下:由题意可知,x1•x3=x22①,x1+x2=π②,x1+2π=x3③,由①②③得:x1•(x1+2π)=(π-x1)2,解得x1=π4,从而可得x2=3π4,x3=9π4,∴b=s
把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故选A
把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故答案为:-1
平行于直线y=15x+2则切线斜率是15导数就是切线斜率即求y'=3x^2+3=15x^2=4x=2,x=-2x=2,y=8+6=14x=-2,y=-8-6=-14所以切点是(2,14),(-2,-1
求导得函数极大值为6-a极小值为-a-26所以a大于6时有一个交点a=6或-26时有两个交点a大于-26小于6时有三个交点a小于-26时有一个交点
1)f'(x)=3x^2+2ax=x(3x+2a)由题意,f'(1)=-3即3+2a=-3,得:a=-3f(1)=0,得:1+a+b=0,即b=-1-a=22)f(x)=x^3-3x^2+2f'(x)
x+y=1(x+y)^2=x^2+2xy+y^2=1(x+y)^3=x^3+y^3+3xy(x+y)=1而x^3+y^3=1/3,代入得:3xy=2/3xy=2/9由于x=1-y;故代入xy=2/9;
设切点为P(x0,x03-3x0)∵f(x)=x3-3x,∴f′(x)=3x2-3,∴f(x)=x3-3x在点P(x0,x03-3x0)处的切线方程为y-x03+3x0=(3x02-3)(x-x0),
{y=2x+3{y=-x-3(写的时候大括号连在一起,这里打不出来)解得x=-2y=-1所以交点坐标(-2,-1)交点到y轴距离为2y=2x+3,令x=0所以y1=3y=-x-3,令x=0所以y=-3
∵y=x3+x∴y′=3x2+1.令y′=4⇒x2=1⇒x=±1.把x=1代入y=x3+x得:y=2.所以切线方程为:y-2=4(x-1)⇒4x-y-2=0;把x=-1代入y=x3+x得:y=-2,所