如图所示,已知ab是圆o上的两点,角aob=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:13:08
如图所示,已知ab是圆o上的两点,角aob=
如图所示,直线AB上有一点O,任意画射线OC,已知OD,OE分别是∠AOC,∠BOC的平分线,求∠DOE的度数.

∵OD,OE分别是∠AOC,∠BOC的平分线,∴∠AOD=∠COD=12∠AOC,∠BOE=∠COE=12∠BOC,∵∠AOC+∠BOC=180°,即2∠COD+2∠COE=180°,∴∠DOE=∠D

如图所示,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,E

解:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面C

如图所示,已知AB、CD是圆O的两条平分弦,位于圆心O的同旁,如果AD=6,CD=8,AB和CD之间的距离为1,求圆O

设AD与直径交点为G,GE=x,直径为2r,由相交线定理(2r-x)x=3*3=9(2r-x-1)(x+1)=4*4=16,2式相减:2r-2x=8,r-x=4,x=r-4所以由(2r-x)x=3*3

如图所示,已知,AB,CD是圆O的直径,弦CE‖AB,求证BE=BD

证明:因为AB、CD是圆O的直径,所以∠AOC=∠EOBAO=BOCO=EO△AOC≌△EOB所以AC=EB连接OD因为CD是圆O的弦,所以OD是圆O的半径因为CD∥AB所以OC=ODAO=BO∠AO

如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D

:(1)连接OD,则OD⊥AC,∴∠ODC=∠OBC=90°,∵OC=OC,OD=OB,∴△ODC≌△OBC,∴∠DOC=∠BOC;∵OD=OB,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,

如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.

证明:作辅助线DO,因为∠B=90°,以O为圆心OB为半径的圆与AB交于AB于点E,与AB切于点D.,所以∠CDO=90°,又因为OD=DB,OC为公共边,所以三角形DOC全等于三角形OBC,所以∠D

如图所示,已知平行四边形ABCD的两条对角线AC与BD交于点O,AB//CD,AO=CO .求证:四边形ABCD是平行四

利用角边角证明三角形AOB和三角形COD全等,从而得到AB=CD,就可以证明他是平行四边形!

如图所示,已知AB是圆O的直径,点C在圆O上,且AB=12,BC=6..(1)如果OD垂直AC,垂足为D,求AD的长

1、∵直径AB∴∠ACB=90∵AB=12,BC=6∴AC=√(AB²-BC²)=√(144-36)=6√3∵OD⊥AC∴AD=AC/2=3√32、∵半圆面积S=π×(AB/2)&

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

如图所示,已知圆O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC.

已知,EA=EC,可得:∠ACE=∠CAE.CD是AB的垂直平分线,可得:AC=BC,则有:∠BAC=∠ABC.在△ACE和△ABC中,∠ACE=∠CAE=∠BAC=∠ABC,所以,△ACE∽△ABC

如图所示AB是圆O的直径DE在圆O上AE,BD的延长线交于C且AB=AC求证BD=DE

证明:AB为直径所以∠ADB=90度因为AB=AC所以三角形BAC为等腰三角形(等腰三角形三线合一性质)所以BD平分∠BAC因为∠BAD=∠CAD所以弧BD=弧DE所以BD=DE

在数轴上表示a,o,1,b四个数的点如图所示,已知O为AB的中点

O为AB的中点所以b=-a则a+b=0,a/b=-1而b>1即-a>1所以a+1

如图所示,已知AB、CD是⊙O的两条平行弦,位于圆心O的同旁,如果AB=6,CD=8,AB和CD之间的距离为1,OE⊥A

设⊙O的半径为rOH=h,由勾股定理得r^2=4^2+h^2还有R^2=3^2+(h+1)^2所以得到r=5h=3⊙O的半径为5

已知等腰三角形ABC内接于圆O,AB等于AC,D是圆O上一点,DE、DF分别是BD和AD的延长线,如图所示.求证:DF平

如下:证明:由题意得∠ACB=∠ABC∠EDF=∠ADB∠ADB=∠ACB∴∠ACB=∠EDF∵∠CDF+∠ADC=180°∠ADC+∠ABC=180°∴∠CDF=∠ABC∴∠CDF=∠EDF∴DF是

如图所示,已知圆O的弦AB,点EF是弧AB上两点,弧AE=弧BF,OE,OF分别交AB于C,D求证:AC等于BD

显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.

已知PA垂直与平面ABC,AB是圆o的直径,C是圆o上的任一点

AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC

如图所示,已知A,B是圆O上的两点,∠AOB=120°,C是弧AB的中点,若圆O的半径为4㎝,求四边形OACB的面积

AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=

(2003•台湾)如图所示,已知△ABC中,AB<AC<BC.求作:一圆的圆心O,使得O在BC上,且圆O与AB、AC皆相

根据角平分线上的点到角两边的距离相等,则要使圆O与AB、AC都相切,只需作∠A的平分线交BC于O点.故选B.

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC