如图所示,大半圆O与小半圆O是同心圆,直径CD与MN在同一在线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:09:08
(1)∵点O1与点O关于直线AC对称,∴∠OAC=∠O1AC.在⊙O中,∵OA=OC,∴∠OAC=∠C.∴∠C=∠O1AC,∴O1A∥OC,即AB∥OC;(2)方法一:如图2,连结OB.∵点O1与点O
1、证明:连接CF、AC∵BC为半圆O的直径∴∠BFC=90∵AD⊥BC∴∠BDE=90∴∠BFC=∠BDE∵∠FBC=∠DBE∴△BCF相似于△BED∴BE/BD=BC/BF∴BE•BF
连接OC、OD、OH,则扇形AOC、COD、DOB的面积相等,都等于半圆面积的13,又因三角形COH与三角形CNH等底等高,则二者的面积相等,所以阴影部分的面积等于扇形COD的一半;12×13×12,
4÷2=28÷2=43.14×2²=12.5612.56÷2=6.283.14×4²=50.2450.24÷2=25.124+8=1212÷2=63.14×6²=113.
270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=
连接BC、AC∵AB是直径∴∠ACB=90°∵CF⊥AB,即∠CFA=90°∴∠ACF+∠CAF=90°∠CAB+∠ABC=90°∵∠CAF=∠CAB∴∠ACF=∠ABC∵AD=CD∴∠ACD=∠CA
做4条辅助线:(假设大圆圆心为O,半径为R;小圆圆心为o,半径为r)a、过O做AB的垂线,交AB于G;b、连接oF,OA,OB(1)因为大圆O与小圆o相切于点C,所以O,o,C,D均在一条直线上;(2
设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°-4x
连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
楼上,答案是2304/49,因为你要用直径20来算
图没错,我有这张卷子,我按题目要求画了一个标准图,用尺子量得AC和AF相等,但就不知道为什么.问下你的老师吧.
郭敦顒回答:(1)条件中没有大圆或小圆半径的数值,求不出半圆中阴影部分的面积,而且也未显示出半圆中阴影部分为何部.(2)不论是否给出了半径的数值和半圆中阴影部分在何处(但必须是弓形部位或两侧部位),若
解题思路:此题考查勾股定理在解题中的应用,利用面积差求三角形的面积解题过程:连接CF,则CF⊥AE∵BE⊥AE∴CF∥BE∴AF/AE=CF/BE=AC/AB设OC=r,则AB=4r∵AE=8∴AF=
证明:连结OC,如图,∵DC切半圆O于点C,∴OC⊥DC,∵AD⊥CD,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠OCA=∠OAC,∴∠OAC=∠DAC,在△ADC和△AEC中,∠ADC=
连接OM,因为M为切点,所以OM垂直AC,又因为AB垂直BC,角c=角c,所以三角形ABC相似于三角形OMC,OM=OB=OD=a/2,AB=a,再依据三角形相似定律可以求出D为OC的中点.可得证1再
按照他的提示来,将两个圆变成同心圆,阴影面积还是大半圆减小半圆的面积.然后把大圆补全,设大圆半径是R,小圆半径是r,你会发现:AF·FB=AF^2=(R+r)·(R-r)=R^2-r^2=4大半圆的面
(1)连接OA、OB、OF,角AOF=90度根据勾股定理AF^2=OA^2-OF^2=大圆半径^2-小圆半径^2=(1/2AB)^2=(6/2)^2=9阴影部分的面积=1/2(大圆面积-小圆面积)=1
帮你找到原题了,http://www.qiujieda.com/math/115438/真的一模一样以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可