如图所示,在竖直放置的光滑圆管道那小球在竖直平面内做圆周运动.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:16:45
(1)小球离开C点做平抛运动,落到M点时水平位移为R,竖直下落高度为R,根据运动学公式可得:R=12gt2运动时间为:t=2Rg
答案:(1)小球离开C点做平抛运动,落到M点时水平位移为R,竖直下落高度为R,根据运动学公式可得:g=1/2*gt^2运动时间t=根号2R/g从C点射出的速度为v1=R/t=根号gR/2设小球以v1经
(1)小球从C点射出后恰好能打到垫子的M端,设小球从C点水平飞出的速度为v,据平抛规律:竖直位移R=1/2*gt^2水平位移4R=vtv=2√(2gR)设小球经过C点时对管的作用力大小为F、方向向上,
mgh=mgR+1/2mv2指小球在C点,重力做功mgh-mgR,mgh=1/2mv2,是小球下落h到A的式子.重力做功与零势能无关
1、对轨道无压力,则mg=mVc^2/R,则在C点速度Vc=sqrt(gR).飞离C点后,mgR=0.5mv^2-0.5mVc^2,则v=sqrt(3gR)2、出C后物体平抛.水平方向:R=Vc*t,
如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金
因为在整个过程中,小球只有在轨道中间和刚出轨道口的时候,对轨道的作用力力是竖起方向的,而在中间的时候,比在出口P处的速度(相对于轨道的速度)快,此时对轨道的作用力是向上的,才最有可能使轨道对地面的压力
从A到C的过程,重力做功mg4R,因此mg4R=0.5mv^2,即出C点的速度是v=sqrt(8gR)出管道后,竖直方向保持匀速运动,到A点的时间为4R/v=sqrt(2R/g)水平方向小球做匀加速运
根据描述可知,向上的力等于向下的力,设B球在最高点的速度为V2,则M2V2^2/R=M1V^2/R+M1g+M2g,解得V2=√[(M1V^2+M2gR+M1gR)/M2].
设圆半径为R,取A的重力势能为零从离A点h1处释放,小球恰能到达C处,则小球到C处是速度恰好为零,从A到C,由机械能守恒可得:mgh1=mgR,解得:h1=R①当从离A点h2处释放,小球从C点平抛恰好
(1)对a到d全过程运用动能定理:-μmgL-4mgR=12mvd2-12mv02.vd=23m/s. 小球离开d点后做平抛运动,4R=12gt2.t=8Rg=25s
/>1.当到达最高点时,速度可以为0这时,刚好能够到达最高点.mV^2/2=mg2R得V=2√(gR)2.当对下底面有压力时,mg-F=mV'^2/RmV^2/2-mV'^2/2=mg2R得V=√[5
可以求啊,回到A点的过程电场力的水平分量没有做功,只有竖直分量做功,直接用动能定理就可以求了:1/2mv^2=4mgR,求出速度大小再问:麻烦详细求出来看一下呢再答:v^2=8gR,速度为根号下8gR
因为乙球能在甲球正上方某个位置(两球未接触)保持静止,根据物体处于平衡状态可知乙球受到的力为平衡力即:重力和甲球对乙球产生的排斥力是一对平衡力,且平衡力的合力为零.又因甲球和乙球之间的作用力为排斥力,
.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满
这个题目其实挺简单的,球沿圆管道运动其实就相当于细杆带着球绕中心旋转,关键是要画受力分析图(这是做好所有力学题的基础,也是最好的方法,你应该多加练习):(1)当管道受压力为零,此时小球运动所受向心力(
A、当磁场方向垂直纸面向外并增强时,根据楞次定律,则有感应电流顺时针方向,即由a到b,再由左手定则,受到的安培力方向向左,因此杆ab将向左运动,故A错误;B、当磁场方向垂直纸面向外并减小时,根据楞次定
根据向心力公式F合=mv²/r可知当管道对小球没作用力即mg=mv²/r有最小速度V(min)=√gr此时管道对小球作用力为0N
1.“最小速度”为零.2.“管道对小球的作用力”等于小球重力.