如图所示,在矩形ABCD中,∠ABC的平分线BE交CD于点E,EF⊥AE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:55:28
如图所示,在矩形ABCD中,∠ABC的平分线BE交CD于点E,EF⊥AE
如图所示,在矩形ABCD中,AB=4cm,BC=10cm,AE平分∠BAD,DF平分∠ADC,则四边形AEFD的面积为多

∵△ABE,△DCF为等腰直角三角形∴S△ABE=S△DCF=4*4/2=8∴S◇AEFD=4*10-8*2=24cm²

如图所示,在矩形ABCD中,AP平分∠BAD交BC于点P.∠CAP=15°,求∠BOP的度数.

在矩形ABCD中,∵AP平分∠BAD,∴∠BAP=∠PAD=45°,又∵∠PAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,

如图所示,矩形ABCD中的阴影部分由y=1,y=x^2围成,求豆子撒在矩形中并落在阴影部分的概率

分析:根据题意,利用定积分即可求得S非阴影=2∫01(x2)dx=2/3,并将其与正方形面积一块代入几何概型的计算公式进行求解.由已知易得:S矩形=2S非阴影=2∫01(x2)dx=2/3阴影面积=2

如图所示,矩形ABCD中的阴影部分由y=1,y=x^2围成,求豆子撒在矩形中并落在阴影部分的概率,

还好,简单!用积分求面积,f(x)=1-x^2得积分F(-1~1)=x-x^3/3得面积F=2/3-(-2/3)=4/3故落在阴影中概率为P=(4/3)/2=2/3再问:积分没学啊再答:这不是半圆,是

如图所示,在矩形ABCD中,对角线AC,BD交于点O,AD=4厘米,∠AOD=60°,求矩形ABCD的面积.

由于矩形对角线互相平分,所以三角形AOD是顶角为60度的等腰三角形,即正三角形.直角三角形ADC中,角DAO=60度,所以角ACD=30度.AC=8,BC=四倍的根号三.一乘就可以.

如图所示,在四边形ABCD中,已知叫∠A=∠B=90°,E拾AB的中点,∠EDC=∠ECD,求证:四边形ABCD是矩形.

证明:∵∠A=∠B=90∴∠A+∠B=180∴AD∥BC∴∠ADC+∠BCD=180∵E是AB的中点∴AE=BE∵∠EDC=∠ECD∴EC=ED∴△ADE≌△BCE(HL)∴∠ADE=∠BCE∵∠AD

已知,如图所示,在矩形ABCD中,EF⊥CE,EF=CE,DE=2cm,矩形的周长为16cm,求AE的长

AE=3,因为三角形AFE全等与三角形EDC所以AE=DC,因为,AE+ED+DC=矩形周长的一半,得出AE=3

如图所示,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、D

(1)如图1,过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,又∵∠A=∠B=90°,∴△A

如图所示,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D'处,求折叠部分三角形AFC的面积.

△BCF和△D′AF中AD′=AD=BC∠D′=∠B=90∠AFD′=∠CFB所以△D′AF≌△BCF,CF=AF因为AF+BF=AB=8所以设CF为X,则BF为8-X在RT△BCF中(8-X)

(1)操作发现:如图所示,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,且点G在矩形ABCD内部,延长

连接EF,△ABE∽Rt△DEF∵在Rt△GED与RtRt△DEF中,GE=AE=DEEF=EF∴△GED≌△DEF【HL】∵∠BEA=∠BEG,∠FEG=∠FED,∠AED=180°∴∠BEA+∠F

已知:如图所示,矩形ABCD中,E是AB的重点,且∠DEC=90°,已知矩形的周长为36,求矩形

解:AE=BE,AD=BC,∠A=∠B=90°,则⊿DAE≌⊿CBE,得DE=CE.又∠DEC=90°,则⊿DEC为等腰直角三角形,故∠CDE=∠ADE=45°,AD=AE=BE=BC.故AD+AB=

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE(1)证明:

(1)连接AD,因为,PA垂直平面ABCD,AD属于平面ABCD,所以BD垂直于PA;因为ABCD为矩形,BD垂直于AC,AC属于平面PAC,所以BD垂直于AC所以BD垂直于平面PAC (2

如图所示在矩形纸片abcd中,将矩形折叠ae=2,cm=4

此题主要考查勾股定理的应用,要学会作辅助线,构造直角三角形,这是在求解答网找到的答案,数理化的题目不会的它都可以搜到的呢,好多同学都在用呢,老师出的题目说不顶也能在上面找得到呀,加油,好好学习!再问:

如题:如图所示 在矩形abcd中 矩形ebfg通过平移变化得到矩形HMND,点E,F,N,H都在矩形ABCD的边上,若B

答:设S3矩形的长高为x和y,依据题意有:BE=HM=3,BF=MN=4所以:AB=HM+BE-y=6-yBC=BF+MN-x=8-x所以:AE=AB-BE=6-y-3=3-yAH=AD-HD=8-x

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF

S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,

答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C

矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,

S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8