如图所示,在光滑的平面上有一木杆,其质量为m,长为l,可绕通过其中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:58:13
重力和电场力的合力可以看做一个新的“倾斜的”重力C点速度最快,也就是新的“最低点”,对应的D点就是“最高点”,所以如果在B点不受压力的话小球是不可能到达D点的.题中已说了“小球做完整的圆周运动”所以速
1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同
我还是给你讲思路吧.你看,小球从A点抛出时将做平抛运动,水平位移CD=1.AC高为h=1m由h=1/2gt2算出时间t.再由s=vt算出小球通过A点时的速度.再由能量守恒算出C点的速度.然后有知道摩擦
(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m
小球沿圆环缓慢上移可看做匀速运动,对小球进行受力分析,小球受重力G,F,FN,三个力,满足受力平衡.作出受力分析图如下:由图可知△OAB∽△GFA即:GR=FAB=FNR;解得:F=ABRG=2cos
第一问u=2E/3mgL吗?再问:是啊,是这个结果,第一问我算出来了,第二问呢?再答:知道摩擦系数了可以求出物体在水平面上的加速度a=-μg又根据初动能求出物体冲上水平轨道的初速度再根据v‘‘^2=2
y:加速度=4/8=0.5①初速度只有X方向所以为3②八秒时Vx=3Vy=4勾股定理得到总的速度=5③X方向的位移=3*4=12Y方向的位移=1/2at^2=0.5*2*4^2=16勾股定理总位移=2
画个碗的俯视图,在小球运动的水平面上半径为Rsinθ(侧视图)对小球进行受力分解,受支持力和重力,合力为向心力,沿水平面(侧视图)并且指向圆心(俯视图),大小为由mgtanθ由mrw2=向心力得mRs
小球过C后落地时间:t=√(2(2R)/g)此时水平位移:4R=vc*tC点对顶压力:Pc=m*vc²/R-mgC点加速度:ac1=g+vc²/R过C点加速度:ac2=g加速度比:
你好可以换个清楚点的图吗我会给你过程再答:经过0.3s则竖直方向上的速度为V2=gt=3m/s而射到斜面上的时候竖直速度和水平速度与合速度的夹角都为45°所以V1=3m/s平抛中水平速度不变所以到达顶
首先先说一下题目不严谨的地方,轻杆自始至终都没有对小球的弹力作用,而是绳子.你问的是“为什么当v由0逐渐增大到根号gL时,杆对小球的弹力逐渐减小”,但是在整个过程中,小球在任何时刻的速度都不是0,在最
小球通过轨道的最高点B后恰好做平抛运动:根据h=1/2gt²,落地时间t=√(2h/g)=√(2×2R/g)=2√(R/g)根据平抛运动的水平位移:L=vB×tB点速度:vB=L/t=2R/
依机械能守恒定律:1/2mVb^2=1/2mVa^2+mg(2R+x);----------(1)依牛顿第二定律:Nb=mg+mVb^2/RNa=-mg+mVa^2/R所以DeltaF=Nb-Na=2
沿小球切线方向的力平衡mgsin2θ=Fsinθ,弹力沿弹簧反方向N+mgcos2θ=k(r-l)+Fcosθ
(1)a球过圆轨道最高点A时:求出a球从C运动到A,由机械能守恒定律R由以上两式求出(2)b球从D运动到B,由机械能守恒定律求出(3)以a球、b球为研究对象,由动量守恒定律:mva=mbvb求出弹簧的
A、当磁场方向垂直纸面向外并增强时,根据楞次定律,则有感应电流顺时针方向,即由a到b,再由左手定则,受到的安培力方向向左,因此杆ab将向左运动,故A错误;B、当磁场方向垂直纸面向外并减小时,根据楞次定
(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2 ①在D点用
给图再问:再答:第一题h为1m再问:过程,谢谢再答:b点压力为0,受力分析,向心力等于重力再答:
AB杆对CD棒的作用力为A点对CD棒的支持力N,方向垂直于CD;设CD重力G,长L,AB=a;∠CDB=θ;重力力矩为:M1=G×L2•cosθ;支持力N的力矩为:M2=N×.AD=N×2.ABcos
A运动半径为L1,B运动半径为L2+L1,设弹簧伸长量为x.弹力T=kx,对B,向心力由弹力T提供,有T=kx=m2*w²,解得x=m2*w²/k,对A,向心力有绳子拉力F和T的合