如图所示,在△ABC中,∠1=∠2,AB BD=AC,求证:∠ABC=2∠C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:09:13
如图所示,在△ABC中,∠1=∠2,AB BD=AC,求证:∠ABC=2∠C
如图所示,在△ABC中,AD平分∠BAC,CD⊥AC,AD=BD.求证:AB=2AC.

从D点向AB做垂线交AB于H,由于AD=BD,△ADB是等腰三角形,它的高DH平分AB,AB=2AH,由于AD平分∠BAC,CD⊥AC,所以AH=AC,所以AB=2AC.

如图所示,在△ABC中,BD=CD,∠ABD=∠ACD.求证:AD平分∠BAC.

证明:如图,过点D作DM⊥AB于M,过点D作DN⊥AC于N,则∠BMD=∠CND=90°,在△BDM和△CDN中,∠ABD=∠ACD∠BMD=∠CND=90°BD=CD,∴△BDM≌△CDN(AAS)

如图所示,在△ABC中,AB=AC,∠B=50°,则∠A=______.

∵在△ABC中,AB=AC,∠B=50°∴∠C=50°∴∠A=180°-50°-50°=80°故答案为80°.

如图所示,在△ABC中,∠BAC=2∠B,AB=2AC,AE平分

证两三角行相似∵∠BAC=2∠B(∠ABC),AE平分∠BAC,∴∠CAE=∠BAE=∠ABC∴∠CEA=∠BAC,∵∠ACE=∠ACB,∴△ACE∽△ABC,∵AB=2AC,∴AE=2CE再问:相似

阅读下列内容:如图所示,在△ABC中,已知∠B=∠C,求证AB=AC.

不正确,(边边角)不可以证明两个三角形全等.可以利用(角角边)来证明,作AD⊥BC即可

如图所示 在三角形abc中,

解题思路:根据直角三角形的知识可求解题过程:最终答案:略

如图所示,在△ABC中,求证:

(1)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E,则∠E=∠BAD,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠E=∠CAD,∴AC=CE,∵CE∥AB,∴△ECD∽△ABD,∴B

如图所示,在△ABC中:

(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+

如图所示,在RT△ABC中,∠ABC=90°,将RT△ABC绕点C顺时针方向

四边形ABCG是矩形证明:因为△ABC旋转60度后,E在AC上∴∠ACB=∠DCE=60°∴BE=EC=BC易证AE=EC∵∠AED=∠CED=90°,AE∶DE=CE∶DE=1∶√3∴∠EAG=60

如图所示,在△ABC中,AD是∠BAC的平分线,求证:AB/AC=BD/CD.

证明:过点D作DE⊥AB于点E,DF⊥AC于点F,过点A作AG⊥BC于点G,∵AD是∠BAC的平分线,所以DE=DF,而SΔABD=DE×AB,SΔADC=DF×AC,∴SΔABD/SΔADC=AB/

如图所示,在△ABC中,AD平分∠BAC,AB+BD=AC.求∠B:∠C的值

延长AB到E,使得BE=BD,连接DE.AE=AB+BE=AB+BD=ACAD=AD∠EAD=∠CAD所以△EAD≌△CAD对应角∠AED=∠ACDBE=BD则∠BED=∠BDE外角∠ABD=∠BED

如图所示,在△ABC中,∠1=∠2=∠3.说明△ABC∽△DEF

证明:因为∠EFD=∠2+∠BCF∠BCA=∠BCF+∠3而∠3=∠2所以∠EFD=∠BCA因为∠EDF=∠3+∠DAC∠BAC=∠1+∠DAC而∠3=∠1所以∠BAC=∠EDF所以△ABC∽△DEF

如图所示,在△ABC中,∠B=45°,AC=5,BC=3,求sinA和AB

根据正弦定理:sinA/BC=sinB/ACsinA=BCsinB/AC=3×√2/2÷5=3√2/10根据余弦定理:AC²=AB²+BC²-2ABBCcosB25=AB

如图所示,在Rt△ABC中,∠C=90°,∠A=30°.

(1)直线l即为所求.               

如图所示,在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线.

证明:∵AB=AC,∴∠ABC=∠ACB,∴∠DBC=∠BCE=12∠ABC,在△EBC与△DCB中,∵∠ABC=∠ACBBC=CB∠BCE=∠DBC,∴△EBC≌△DCB(ASA),∴BE=CD.∴

如图所示,在△ABC中,∠CAB=50°,∠1=∠2=∠3.

∠ACD=∠EAB=∠CBF∠CAB=∠CAD+∠EAB=∠CAD+ACD=∠EDF=50°△DEF的各内角与△ABC的各内角有着∠CAB=∠EDF,∠CBA=∠FED,∠ACB=∠DFE证法与题1相

如图所示,在△ABC中,∠B=90°,点P从点B开始沿BA边

解题思路:勾股定理解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph