如图所示,圆o的半径od垂直于弦ab,垂足为c,连接ao并延长,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:40:19
设圆的半径是x,那么OE=OD-ED=x-2;OC=x;CE=BC/2=4三角形OEC是直角三角形,由勾股定理(x-2)2+42=x2可以解出x=5所以圆O的半径是5.
圆心为O 连接BE. 因为圆O的半径OD垂直弦AB于点C,AB=8 所以AC=BC=4OD垂直AC 设半径OD为X(AO=X
ad=√(4^2+3^2)=5ab=4*2=8od=3oa=4△aod∽△acbac:oa=ab:adac=oa*ab/ad=4*8/5=6.4cd=ac-ad=6.4-5=1.4
连接AC,F是OD的中点,半径OD垂直于直径AB,弦BC过点F且交圆O于点C,所以tan
∵OC⊥AB∴AD=BD=1/2AB=1/2×10=5∴根据勾股定理OA²=AD²+OD²=5²+2²=25+4=29∴OA=√29∴圆的半径√29
延长DO交H,应为角A=40,所以角D=50,所以弧CH=100,所以弧DC=80
首先证明EF为圆O的切线连接OE,角EHF=FEF=DHOODH=OEHODH+OHD=90OEF=OEH+HEF=90故EF为圆O切线连接OG三角形CGO全等于EGOGC=GE角B+CAB=90°角
1.因为C、D为弧AB的三等分点,所以三段圆弧所对应的圆心角相等,都为30°,故∠AOC=30°正确2.AO=BO,∠AOC=∠BOD,∠OAE=∠OBF所以三角形AOE全等于BOF,所以OE=OF,
(R-2)的平方+4的平方=R的平方R=5
设半径OA=OC=x则DC=OC-OD=x-4在直角△OAD中,AD^2=OA^2-OD^2在直角△CAD中,AD^2=AC^2-DC^2OA^2-OD^2=AC^2-DC^2x^2-4^2=(√10
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
∵OD⊥弦BC∴BE=(1/2)BC=4设圆O的半径为R在Rt△OBE中OB=ROE=OD-ED=R-2∵OB²=OE²+EB²∴R²=(R-2)²+
(1)∵BC⊥OA,∴BE=CE,AB=AC,又∵∠ADB=30°,∴∠AOC=60°;(2)∵BC=6,∴CE=12BC=3,在Rt△OCE中,OC=CEsin60°=23,∴OE=OC2-CE2=
130度再问:过程麻烦写下,谢谢哈再答:因为AB垂直CD易得出角COA等于角AOD(相似三角形)即角COB等于角DOB因为劣角COD等于100°可得优角为260°角BOD等于优角COD的一半即130°
OD为半径,且OD垂直CDAB为弦,根据垂径定理那么OD垂直平分AB在直角三角形OBE中,BE=OB*sin角COD=10×4/5=8AB=2BE=16
(1)证明:∵E为OD的中点,EG垂直AB于G,EF⊥BC于F∴△BGE∽△BAD;△BEF∽△BDC∴BG/BA=GE/AD=BE/BD=EF/DC=BF/BC=3/4∴矩形GBEF∽矩形ABCD(
CD垂直OD与点D,连结OC,交圆O于点B,过点B作弦AB垂直OD,点E为垂足,已知圆O的半径为10,sin∠COD=4/5,求CD之长.设CD=4x,则OA=5x,故有等式25x²-16x
分析:此题用到了垂径定理和圆周角与圆心角的关系,同时还有勾股定理
因为AB、AC两弦垂直,且A在圆周上所以∠BAC=90,所以∠BAC对应的圆弧为180所以BC连线过原点,即为圆的直径所以r=d/2=(√(AB^2+AC^2))/2=(√(100+100))/2=(