如图所示,一电荷量为q的带电粒子(不计重力)自A点以速度V垂直射入 30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:28:23
恰好能沿其中线匀速穿过,则电场力qE=qU/d=mg,即板间电压U=mgd/q带电量增大到原来的2倍,板间电压U'=Q/C=2U,则竖直方向:qU'/d-mg=ma,可知竖直方向加速度a=g.即粒子竖
1根于轨迹定圆心,可知圆心在磁场上方既洛沦兹力向上,根据洛沦兹力和速度垂直,可知电流方向和速度方向相反,所以为负电2过圆心做垂线,因为速度偏转角为60度,所以为等边三角形,所以半径为L3因为r=mv/
(1)粒子在电场中所受的电场力大小为F=qE=qUd=qUd;上极板带正电,极板间的电场方向向下,粒子受到的电场力向下;由牛顿第二定律可知,粒子的加速度大小:a=Fm=qUmd,方向:竖直向下.(2)
因为等量异种电荷的电场线分布为图中所示中垂面电势为0,为0势面,正好可以看成这个模型,因为MN接地电势为0再问:可是电场强度呢再答:极板没有电场强度吗==里面有正电荷哦
哈!又让叔看到你了,学习很认真又有点倔的小姑娘.W电=qEx0,这个公式是用来计算匀强电场中电场力做功大小的,q代表电荷的带电量,E代表匀强电场的大小,x0代表电荷沿场强方向移动的距离.当然,这个公式
(1)对整个运动过程运用动能定理,得到Eqd+Eq(d-L)=2mgd∴E=4mg3q故两极板间匀强电场的电场强度为4mg3q.(2)由题意知,当小球下降L时,速度达到最大,此时:2mgL-EqL=1
由动能定理得:mgh-W=0,所以W=mgh>0又因为U=mgh/q,E=U/d所以Ea>E
我的解题是:分析1、因将细线和A、B两球看作一个整体,则因A、B两球受到的电场力是等大反向的,所以整体处于上图所示的竖直静止状态.分析2、隔离法,对于A球,由分析1得其受力只有竖直向上的拉力FTA,竖
电场力F=qEE=U/dU=Q/C所以:F=qE=qU/d=qQ/(Cd)
(1)W电=qEx0…①W电=-(Epx0-0)…②联立①②得Epx0=-qEx0(2)解法一在带电粒子的运动方向上任取一点,设坐标为 x由牛顿第二定律可得qE=ma…④由运动学公式得V&n
由题,带电小球的运动轨迹为直线,在电场中受到重力mg和电场力F,其合力必定沿此直线向下,根据三角形定则作出合力,由图看出,当电场力F与此直线垂直时,电场力F最小,场强最小,则有F=qEmin=mgsi
Kq/r^2就相当于所有电荷在中心点,这道题目当年做也没想到,后来老师讲可以把球看成质点,恍然大悟.
设粒子的入射速度为v,粒子从a点到c点这一过程,由牛顿第二定律有:qE=ma,由运动学公式有:L=at^2/2,L=vt,设粒子在a点和c点的动能分别为Eka和Ekc,由动能定理有:qEL=Ekc-E
A、由题电势差Uoa=Uob,根据动能定理得 o→a过程:mgh1+(-qUoa)=12mv2a  
用微元法电荷均匀分布在带电圆环上,则环上一点带电量为Q/2πR,此点和点电荷的作用力F=kq(Q/2πR)/(R^2+L^2)正交分解,水平方向力Fx=FL/(R^2+L^2)^0.5,竖直方向力Fy
粒子在0~T4、T4~T2、T2~3T4、3T4~T时间间隔内做匀变速运动,设加速度分别为a1、a2、a3、a4,由牛顿第二定律得qE0=ma1、2qE0=-ma2、2qE0=ma3、qE0=-ma4
1、小球在金属板间做直线运动,说明电场力qE和重力的合力在水平方向.则cosθ=mg/qE,电场强度E=mg/(qcosθ)2、AB之间,合外力F=mgtanθ,合外力做功W=mgLtanθ=0.5m
解题过程如下,如有不明,欢迎追问!再问:学圆周运动的时候。只要小球通过最高点不就可以做圆周运动么。那这个题不是复合场么。qE>mg时。最高点怎么理解。再答:qE>mg,相当于只受到一个向上的力,此时的
2(1):球壳内场强为零.球壳外场强E=/4πεR^2.(2)球壳内电势为零.球壳外电势E=/4πεR.3(1):B=((2I/0.5d)-(I/0.5d))μ/2π=μI/πd.(2):x=2d/3
1、(1)球壳内电场为零,外部电场为:E=kQ/(r*r),r为该点到球心的距离.(2)球壳内电势为U=kQ/R.球壳外电势为U=kQ/r.(3)根据(1)(2)的结果绘制.2、无限长导线外一点的磁场