如图所示,一内半径为a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:00:04
点电荷在A点处产生的场强大小为E=kQr2=9×109×10−80.12N/C=9×103N/C,方向从O→A;而匀强电场方向向右,大小9×103N/C,叠加后,合电场强度为零.同理,点电荷在B点处产
外部面积是球的面积,内部是两个圆锥的侧面积
一质量为m的小球以角速度ω在水平面上做匀速圆周运动,则它的运动半径为r=√[R²-(R-h)²]=√[2Rh-h²]所以F=mω²r=mω²√[2Rh
A、a、c两点的线速度大小相等,b、c两点的角速度相等,根据v=rω,c的线速度大于b的线速度,则a、c两点的线速度不等.故A错误,C正确;B、a、c的线速度相等,根据v=rω,知角速度不等,但b、c
画个碗的俯视图,在小球运动的水平面上半径为Rsinθ(侧视图)对小球进行受力分解,受支持力和重力,合力为向心力,沿水平面(侧视图)并且指向圆心(俯视图),大小为由mgtanθ由mrw2=向心力得mRs
小球由A到C过程中,根据机械能守恒定律:mg2R+12mv2=12mvA2由C到A过程,L=vt2R=12gt2联立三个方程得:v=gl24R+4gR答:小球在A点运动的速度为v=gl24R+4gR.
主要是保持物体M受到的合力恰好为零.可以认为,M受到离心力、摩擦力及m的拉力(假定为静摩擦力).如果旋转的角速度是w,可以得到:4π^2xRxMxw^2=Mxgxμ+mxgxμ,整理后路得到,w=v{
(1)小球过B点时,由牛顿第二定律可得:mg=mv2BR解得:vB=gR(2)小球从A点到B点,由动能定理可得:−mg•2R=12mv2B−12mv20解得:v0=5gR(3)对小球经过A点时做受力分
这个是镜像电荷法,高中竞赛的话把公式死记住就好了.一共有两种情况,无限大导体平板和导体球壳.至于深层原理,你上大学如果学物理或相关专业,学到电动力学后就明白了,需要好多数学物理方程的知识(具体说是偏微
A、由于a、c两点是传送带传动的两轮子边缘上两点,则va=vc,故A正确;B、由于a、c两点是传送带传动的两轮子边缘上两点,则va=vc,b、c两点为共轴的轮子上两点,ωb=ωc,rc=2ra,根据v
A、C、A点与C点的线速度大小相等,B、C两点的角速度相等,根据v=rω,C的线速度大于B的线速度,则A、B两点的线速度不等.故A错误,C错误.B、点A与点C的线速度相等,根据v=rω,知角速度不等,
圆心的电荷产生的电场在A、B点大小都是k*Q/R^2=9000N/C圆心的电荷在A点产生的电场方向是向左的,所以A点的合成电场就是0;圆心的电荷在B点产生的电场方向是向下的,所以B点的合成电场就是90
设a、b球被弹簧弹开的瞬时速度为、,,故当b球恰能通过最高点时,a球能通过最高点。此时弹簧弹性势能最小。设b球恰能达到最高点的速度为vb,对于b球,由机械能守恒定律可得所以弹性势能最小值是由以上各式解
C、a点与c点是同缘传动,线速度相等,故C正确;A、B、a点与c点的线速度相等,转动半径不等,根据v=rω转动角速度不同,又由于b、c两点的角速度相同,故a点和b点的角速度不等;a点和b点转动半径相等
(1)小球恰好做圆周运动,在最高点,由牛顿第二定律得:mg=mv2R,小球从A点到最高点过程中,机械能守恒,由机械能守恒定律得:mg(h-2R)=12mv2,解得:h=2.5R;(2)设小球到达P点脱
机械能守恒,机械能等于动能加势能,将最低点看作0势能面无外力作用下如你的图所示,只要球有质量就必须有能使它到达最高点的能,也就是说最低点时动能>0,速度>0.杆对球作用力也必须大于球重力,否则就无法维
设球冲上竖直半圆轨道时速度为VVo^2-V^2=2aSV^2=Vo^2-2aS=7*7-2*3*4=25V=5m/s球冲上竖直半圆轨道后机械能守恒,设球离开轨道时速度为V1(1/2)mV1^2+mg(
(1)若发射的粒子速度垂直DE边向上,经过上图轨迹回到S点的时间最短.粒子在磁场中运动的周期T=2πmqB,则最短时间t=12T=πmqB.(2)由牛顿第二定律得:qvB=mv2R,解得R=mvqB,
A、由于a、c两点是传送带传动的两轮子边缘上两点,则va=vc,根据v=2πrT,有:Ta:Tc=r:2r=1:2;c、d两点是共轴传动,角速度相等,故周期相等,即:Tb:Td=1:1;故Ta:Td=