如图所示,△ABC是圆O的内接四边形,AC=BC,D为弧AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:56:59
如图所示,△ABC是圆O的内接四边形,AC=BC,D为弧AB
如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

这就是弦切角=圆周角呀过CO作直径,交圆周于POC垂直CE. ∠ECD+∠DCP=90°直径的圆周角∠CDP=90°,所以 ∠P+∠DCP=90°∠ECD =∠P圆周角同弧上的圆周

三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

与圆有关,证明边等如图所示,△ABC内接于圆O,AB是直径,D在圆O上,过点C的切线交AD的延长线于点E,且AE⊥CE,

连接OC.因CE为圆O的切线,故OC⊥CE.已知AE⊥CE,则OC‖AE,得∠DAC=∠ACO.因OC=OA,故∠CAO=∠ACO.已证∠DAC=∠ACO,得∠DAC=∠CAB,则:弧DC=弧BC(同

如图 △abc是圆o的内接三角形sin∠B=4/5,AC=8,求圆O的半径.

显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²

如图所示,△ABC内接于

(1)证明:连接OC.              (1分)∵

如图所示,三角形ABC为圆O的内接三角形,AB=1,角C=30度,则圆O的内接正方形的面积为多少?

连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2

如图所示,△ABC内接于圆O,点D在OC的延长线上,sinB

解题思路:利用圆的切线的判定定理求证。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

如图所示,五边形ABCDE内接于圆O,AC是圆O的直径,AD垂直于BE于G,

(1)∵AC是圆O的直径∴∠ADC=90°又∵AD⊥BE于G∴∠DGB=90°∴∠ADC+∠DGB=180°∴DC∥BE(同旁内角互补两直线平行)亲啊,我也在找这一题.第二小题我也不会,我作业上只做了

5.△ABC是⊙O的内接三角形,AB=AC

我想问一个问题,这个图是题目上的吗,还是你自个儿画的,我觉得图形不标准,因为解得AB长为12再问:不好意思我们老师也弄不懂全班同学崩溃了有四道作业题目这只是第一题我也没想到那么变态再答:我看过了,这个

已知,如图所示,四边形ABCD是圆O的内接四边形,AD平分△ABC的外角∠EAC,求证DB=DC

证明:在BA的延长线上取一点E,则AD平分∠EAC,∠EAD=∠CAD∵四边形ABCD是圆O的内接四边形∴∠EAD=∠DCB【圆外接四边形外角等于内对角】∠DAC=∠DBC【同弧所对的圆周角相等】∴∠

已知等腰三角形ABC内接于圆O,AB等于AC,D是圆O上一点,DE、DF分别是BD和AD的延长线,如图所示.求证:DF平

如下:证明:由题意得∠ACB=∠ABC∠EDF=∠ADB∠ADB=∠ACB∴∠ACB=∠EDF∵∠CDF+∠ADC=180°∠ADC+∠ABC=180°∴∠CDF=∠ABC∴∠CDF=∠EDF∴DF是

如图所示,已知圆O的半径为5,△ABC是圆O的内接三角形,且AC=4 .

如图,圆周角B=1/2<AOC=<AOD,AD=2,sinB=2/5AE=ABsinB=12/5

在平面直角坐标系中,三角形abc是圆o的内接三角形

到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

如图所示,△ABC内接于圆O,AD⊥BC于点D,∠BAD=∠CAO,求证AE是圆O的直径

∵∠DAO+∠OAC+∠C=90°同弧所对圆周叫相等∴∠C=∠E又∵,∠BAD=∠CAO∴∠BAD+∠DAO+∠E=90°∴∠ABE=90°∴AE为圆O的直径

如图所示,△ABC内接于圆O,AD为△ABC的高,AM平分∠ABC

证明:(1)延长AO交圆于E,连接BE.∵AE是直径∴角ABE=90°∵∠ABE=∠ADC=90°∠E=∠C∴△ABE∽△ACD∴AB/AE=AD/AC∵AE=2AO∴AB*AC=2AD*AO(2)由

1.圆o 内接△ABC中,∠BOC=58度 ,则∠BAC的度数是____________

1/2∠BOC=29度AB弧:BC弧:CA弧=∠C:∠A:∠B=2:3:5∠A=3/10*180=54度

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B