如图所示,D是三角形ABC的边BC的中点,DM垂直DN,交AB于M,交AC于N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:55:03
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
⑴延长AD到E使DE=AD,连接BE、CE,则ΔECB为所求.⑵∵CD=BD,AD=DE,∴四边形ABEC是平行四边形,∴CE=AB(也可以从全等三角形得出).在ΔACE中,7-5
证明:∵FC∥AB∴∠ADE=∠CFE∵∠AED=∠CEF,DE=EF∴△ADE全等于△CFE∴AD=FC∵BD=AB-AD∴BD=AB-FC
∵△ADB≌△EDB≌△EDC,∴∠ADB=∠EDB=∠EDC,∠DEC=∠DEB∠=A,又∵∠ADB+∠EDB+∠EDC=180°,∠DEB+∠DEC=180°∴∠EDC=60度,∠DEC=90在△
因为角ADC=角BAD+角B,角BAC=角BAD+角DAC,因为,
证明:连接BI,∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI(三角形的外角等于与它不相邻的两个内角和),∠IBE=∠
延长DE交AB于F,交AC于G,在△AFG中 AF+AG>FD+DE+EG在△FBD中 FB+FD>BD在△CGE中
第一个问题:∵A、B、E、C共圆,∴∠BAE=∠ECD.∵I是△ABC的内心,∴∠BAE=∠EAC,∴∠ECD=∠EAC.∵I是△ABC的内心,∴∠ACI=∠DCI.由三角形外角定理,有:∠EIC=∠
因为EF是三角形ABC的中位线,所以EF=BC/2=2,EF//BC,所以角EDB=角DBC,角FDC=角DCB,因为BD平分角ABC,CD平分角ACB,所以角EBD=角DBC,角FCD=角DCB,所
(1)因为EF‖AB,所以∠EFC=∠A因为FG‖BC,所以∠AFG=∠C因为∠EFC=∠AFG,所以∠A=∠C所以∠B=180°-2∠A=40°(2)∠EFG=180°-2∠AFG∠EGF=180°
解法1,证△BDF∽△BCE,得DF/CE=BD/CD=2;解法2,连接AD,∵CD=BD/2,∴S△ABD=2S△ACD,就是AB*DF/2=2(AC*DE/2),两边消去AB和AC立得DF=2DE
可以拍的再清楚点吗
证明:根据勾股定理:AC^2=AD^2+CD^2BC^2=CD^2+DB^2所以:AC^2+BC^2=2CD^2+AD^2+DB^2=2AD*DB+AD^2+DB^2=(AD+DB)^2=AB^2即是
1.设BD=x,AE=y,则:c+x=b+a-xb+y=a+c-y∴x=(b+a-c)/2y=(a+c-b)/2即BD=(b+a-c)/2AE=(a+c-b)/22.S=1/2bc,a²=b
证明:连接BD∵AD是⊙O的直径∴∠ABD=90°∵AE⊥BC∴∠AEC=90°∵∠D=∠C∴∠BAD=∠CAE
(1)△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF
设四边形AFDE面积为S3∵DE∥AB∴△CDE∽△ABC,∴S△CDE/S△ABC=(CD./BD)²即:S1/(S1+S2+S3)=(CD/BC)²√[S1/(S1+S2+S3
……擦……不要问我这么难的问题……再问:��.再答:���������Сѧ��ɡ���