如图所示,ao垂直于bo,co垂直于do
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:48:45
1: 90°,垂直定理;50°或者130°, 10°或者90°,根据上下文关系推断出你的图是这样的2:∵∠DCA=∠CAB ∴直线CD平行于直线AB,∵∠ABC=90°&
二楼回答有误,O是任意一点,所以以O为顶点的角也可能是锐角我这个是通解,无论O是什么点,只要在内部都满足那种情况.正确解法如下:AB+AC>BO+COAB+BC>AO+COAC+BC>AO+BO将三个
受力分析,O点受到三个拉力而平衡;两段绳子的拉力的合力与重力等大反向,随着两绳子之间的夹角增大,两绳子的拉力合力总不变,这样随夹角的增大而分力增大;一开始Fb=G,Fa上的力为零,当逐渐移动A时,Fa
证明:在△OAB当中AO+BO>AB①在△OBC当中BO+CO>BC②在△OCA当中AO+CO>AC③①②③相加就得(AO+BO)+(BO+CO)+(AO+CO)>AB+BC+AC即2(AO+BO+C
因为角BOA+角BOC+角COD+角AOD=360°因为角AOD是150°所以角BOA+角BOC+角COD=360°—角AOD=360°—150°=210°因为AO垂直BO,CO垂直DO所以角BOA=
也可以,但是你水平方向加速度求错了不是gtanθN=mgcosθ,分解到水平方向是mgcosθ*sinθ水平方向加速度是gcosθ*sinθR=0.5*gcosθ*sinθ*t^2,和第一个是一样的再
在三角形ABD和三角形ACD中,因为AB=AC角ABD=角ACDAD=AD所以,△ABD≌△ACD所以,角ADB=角ADC又因为,角ADB+角ADC=180度所以,角ADB=角ADC=90度所以,AD
过O作OE⊥BC交BC于E,再过A作AF⊥BC交BC于F.∵OE⊥BC,AF⊥BC,∴OE∥AF,∴△OEL∽△AFL,∴OL∶AL=OE∶AF.△OBC与△ABC是同底不等高的三角形,∴OE∶AF=
如图,做PD⊥OB角OAP+角OBP=180度角OBP+角PBD=180度所以角OAP=角PBD也就是角PAC=角PBD又角PDB=角PCA=90度所以角DPB=角CPA因为OP为角AOB的角平分线所
在ΔOAD与ΔOCB中,OB=OD,OA=OC,∠AOD=∠BOC,∴ΔOAD≌ΔOCB(SAS),∴∠A=∠C,在ΔOAF与ΔODE中,OA=OC,∠A=∠C,∠AOF=∠COE,∴ΔAOF≌ΔCO
∵四边形ABCD中,BO=DOCO=AO∴▭ABCD∴AD∥BC,OA=OC,且∠AOF=∠ACB(或∠AFO=∠CEO),又∵∠AOF=∠COE,∴△AOF≌△COE,∴OE=OF;是这
AB∥CD,证明如下:在△OAB和△ODC中AB/CD=OA/OD=OB/OC所以△AOB∽△DOC,∠B=∠C,(相似三角形的对应角相等)所以AB∥CD.(同位角相等的两条直线平行).
由题意知DE//BO,则角2=角3,又因为角2=角1,所以,角1=角3,所以DO//CF,所以DO垂直AB
ABCD为平行四边形所以AB平行CD,且AB=CD由AB平行CD则内错角OAB=OCDOBA=ODC且AB=CD所以由ASA三角形OAB和OCD全等所以AO=CO,BO=DO
FAO=20N/Sin30°=40NFOB=FAO*Cos60°=40*2分之根号3
证明:∵AO=BO,CO=DO,∠AOC=∠BOD∴⊿AOC≌⊿BOD(SAS)∴∠C=∠B又∵CO=DO,∠COE=∠DOF∴⊿COE≌⊿DOF(ASA)∴EO=FO
由BD、CE是三角形ABC的中线,知D、E分别是AC、AB的中点,所以DE是三角形ABC的中位线,所以DE//BC,且DE=1/2BC=4cm,同理FG是三角形OBC的中位线,所以FG=1/2BC=4
∵∠COD=90°,∠BOD=30°,∴∠BOC=∠COD-∠BOD=60°,∵∠AOB=90°,∴∠AOC=∠AOB-∠BOC=30°.