如图所示,ABC是光滑轨道,BC段是半径为R的圆弧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 13:39:11
如图所示,ABC是光滑轨道,BC段是半径为R的圆弧
如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC

(1)、设物块的质量为m,其开始下落处位置距BC的竖直高度为h,到达B点时的速度为v,小车圆弧轨道半径为R.由机械能守恒定律得:mgh=12mv2      &

如图所示,A、B是位于竖直平面内、半径R=0.5m的14圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道

(1)设滑块在B点速度为v,对滑块从A到B的过程,由动能定理得:mgR-EqR=12mv2①设滑块在B点对B点压力为F,轨道对滑块支持力为F′,由牛顿第三定律得得:F′=F②对滑块由牛顿第二定律得:F

如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道

(1)由机械能守恒定律,得:mgR=12mvB2在B点 N−mg=mvB2R由以上两式得 N=3mg=3N.故小物块到达圆弧轨道末端B点时受的支持力为3N.(2)设在水平面上滑动的

如图所示,一个3/4圆弧形光滑细圆管轨道ABC放置在竖直平面内,轨道半径R,

答案:(1)小球离开C点做平抛运动,落到M点时水平位移为R,竖直下落高度为R,根据运动学公式可得:g=1/2*gt^2运动时间t=根号2R/g从C点射出的速度为v1=R/t=根号gR/2设小球以v1经

如图所示,轨道ABC的AB是半径为0.4m的光滑14圆弧,BC段为粗糙的水平轨道,且圆弧与水平轨道在B点相切.质量为1k

(1)滑块从A到B过程中,机械能守恒,由机械能守恒定律得:Ek=mgR=1×10×0.4=4J;(2)在B点:Ek=12mv2,速度v=2Ekm=2×41=22m/s,在B点,由牛顿第二定律得:F-m

固定的轨道ABC如图所示,其中水平轨道AB与半径为R的1/4光滑圆弧轨道BC相连接,AB与圆弧相切于B点.质量为m的小物

(1)能量守恒+机械能守恒2mg*2R-0.25mg*2R=mghh=3.5R(2)mg*3.5R=0.25mg*XX=14R距离B点14R再问:(1)中半径没有那么长再答:在C点竖直上抛

如图所示,AB是竖直平面内的事1/4光滑圆弧轨道,下端B与水平直轨相切.一小球自A点起由静止开始沿轨道下滑.已知圆轨道半

这样的题目因为没有摩擦,所以不计能量损失,用守恒的观点看,小球下落是势能转化为动能.势能很好量化,就是下落的高度产生的.动能等于势能减少量,而动能跟速度又是有相关公式的.这么说这个题会做了吗?至于圆弧

如图所示,光滑圆轨道ABC,其中AB部分水平, BC部分是处于竖直平面内的半径为R的半圆管,圆管内

(1)轨道ABC光滑,小球从A运动到C,只有重力做功,故机械能守恒,设小球到C点的速度为 vC,据机械能守恒有:mv02/2=2mgR+mvC2/2,小球要能过C点,vC应不小于0,即初速度

如图所示,半径为R的光滑半圆轨道ABC固定在竖直平面内,它的底端与光滑水平轨道相切

小球过C后落地时间:t=√(2(2R)/g)此时水平位移:4R=vc*tC点对顶压力:Pc=m*vc²/R-mgC点加速度:ac1=g+vc²/R过C点加速度:ac2=g加速度比:

如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC

解析:设物块开始下落的位置距水平轨道BC的竖直高度是h,则最高的到A点高度为h-r,物体从最高点下落到A点的过程中,机械能守恒,则mg(h-r)=1/2mv^2①由物块到达圆弧轨道最低点B时对轨道的压

固定的轨道ABC如图所示,其中水平轨道BC与半径为R=2m的1/4光滑圆弧轨道AB相连接,BC与圆弧相切于B点.质量为m

1,动能定理:1/2mv^2=mgR,2,动能定理:mgR=umgl再答:补充v,l为所求值,只列了式子再问:第二个后面的u是什么再答:是u=0.2,再问:l呢?再答:l是在粗糙面上的位移,

(2014•湖北二模)如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=40kg小车B静止于轨道右侧,其

(1)物体下滑过程机械能守恒mgh+12mv21=12mv22∴v2=v21+2gh=25m/s物体与小车作用过程动量守恒mv2=(m+M)V∴V=mv2m+M=20×2520+40=235m/s对车

如图所示,竖直平面内的3/4圆弧形光滑轨道ABC,其半径

(1)恰好到达最高点mg=mv^2/Rv=根号gRR=1/2gt^2t=根号2R/gvt=Xod=R根号2(2)能量守恒重力势能转化为动能mgH=1/2mv^2H=1/2Rh=H+R=3/2R(3)m

如图所示,abc是光滑的轨道,其中ab是水平的,bc为竖直平面内的半圆且与ab相切,半径R=0.3m.zhiliangm

1、(1)分别以v1和v2表示小球A和B碰后的速度,v3表示小球A在半圆最高点的速度,则对A由平抛运动规律有:L=v3t和h=2R=gt2/2解得:v3=2m/s.对A运用机械能守恒定律得:mv12/

【物理】如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径

1、设A到C的垂直高度为h物体对AB斜面的正压力Fn=mgsinθ摩擦力:f=μFn=μmgsinθ由A到第一次经过C点位置过程用动能定理:f*(h+R*cosθ)/sinθ=mgh解得:h=μRco

如图所示,半径为R的光滑圆弧轨道ABC竖直放置,A与圆心O等高,B为轨道的最低点,该圆弧轨道与一足够长的粗糙直轨道CD相

mgR-mgR/2=mgR/2主要就是能量守恒一部分重力势能用来克服摩擦力做功最后滑块就是在C点和C点在圆上对应的两点之间运动

如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的.质量M=40kg的小车B静止于轨道右侧,其上表面与轨道底

(1)下滑过程机械能守恒,有:mgh+12mv 21=0+12mv 22代入数据得:v2=6m/s;设初速度方向为正方向,物体相对于小车板面滑动过程动量守恒为:mv2=(m+M)v

如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M=40 kg的小车B静止于轨道右侧,其板面与轨道底端靠近

(1)下滑过程机械能守恒,设滑到底端的速度为v2∵mgh+12mv21=0+12mv22∴v2=v21+2gh=25m/s根据mv2=(m+M)V∴V=mv2m+M=20×2520+40m/s=235

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直

(1)小物体下滑到C点速度为零.小物体才能第一次滑入圆弧轨道即刚好做简谐运动.从C到D由机械能守恒定律有:mgR(1-cosθ)=12mvD2    ①在D点用

(2013•河北一模)如图所示,AB是一倾角为θ的光滑直轨道,BCD是半径R=1.2m的光滑圆弧轨道,它们相切于B点,C

①第1个小球从A运动到C过程中,由机械能守恒定律得:Mgh=12Mv20解得:v0=2gh=2×10×1.8m/s=6m/s两个小球碰撞前后,由动量守恒和机械能守恒得:Mv0=Mv1+mv2;12Mv