如图所示 直线ab cd相交于点o,OE是角COB的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:14:42
如图所示 直线ab cd相交于点o,OE是角COB的平分线
如图所示,直线AB,CD相交于点O,OE⊥OF,OD平分∠AOE.

∵OE⊥OF.∴∠EOF=90度;又∵∠AOE=180°-∠BOE=120°;OD平分∠AOE.∴∠DOE=(1/2)∠AOE=60°.∴∠COF=180°-∠EOF-∠DOE=30°.∵∠AOE=1

如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2

∵四边形ABCD是平行四边形,∴∠CAD=∠ACB,OA=OC,而∠AOM=∠NOC,∴△CON≌△AOM,∴S△AOD=4+2=6,又∵OB=OD,∴S△AOB=S△AOD=6.故答案为6.

如图所示,菱形ABCD的对角线相交于点O,AE∥BD,BE∥AC,AE,BE相交于点E,那么四边形OAEB是矩形吗?说明

四边形OAEB是矩形.理由:∵AE∥BO,BE∥AO,∴四边形OAEB是平行四边形,又∵四边形ABCD是菱形,∴AC⊥DB.∴∠AOB=90°,∴平行四边形OAEB是矩形.

在平行四边形ABCD中,对角线AC,BD相交于O,过O点任意作两条直线交平行四边形ABCD的AB、CD边于E,F

证明:∵平行四边形ABCD∴AO=CO,∠BAO=∠DCO∵∠AOG=∠COH(对顶角相等)∴△AOG≌△COH(ASA)∴OG=OH∵平行四边形ABCD∴AO=CO,∠BAO=∠DCO∵∠AOG=∠

如图所示,在平行四边形ABCD中,AB⊥AC,AB=1,BC=根号5.对角线AC、BD相交于点O,将直线AC绕点O顺时针

旋转角为九十度即EF垂直于AC,因为角BAC=角AOF,所以AB平行于EF,又因AF平行于BE,所以四边形ABEF为平行四边形.因为AF平行于EC,所以角FAC=角ECA,又因AO=OC,角AOF=角

此题我不会希望帮如图所示平行四边形ABCD的对角线AC,BD相交于点O,直线EF经过点O且分别交AB,CD的延长线于点E

∵四边形ABCD为平行四边形∴AB∥CD,OB=OD∴∠OEB=∠OFD在△BOE和△DOF中∠OEB=∠OFD∠BOE=∠DOFOB=OD∴△BOE≌△DOF(AAS)∴BE=DF

如图所示,平行四边形ABCD的对角线AC,BD相交于点o,E,F是直线AC上的两点且AE=CF,求证:四边形BFDE是平

所以AO=CO.BO=DO因为AE=CF所以EO=FO.\x0d所以角DAO=角BOCBC=AD\x0d所以角DAE=角BCF\x0dBC=ADAE=CF角DAE=角BCF\x0d三角形DAE全等三角

如图所示,平行四边形ABCD的对角线AC,BD相交于O,EF经过点O,EF经过点O与AD延长线交

∵平行四边形ABCD∴OD=OB,AB‖CD∴∠EDB=∠FBD又∠EOD=∠BOF∴⊿EOD=⊿FOB∴OE=OF

如图所示,直线AB,CD相交于点O,OE,OF是两条射线.

1、∠AOE的邻补角是∠BOE2、若C、O、D在同一直线,则∠DOF+∠COF=180°,又∵∠DOF=40°,∴∠COF=180°-∠DOF=140°(若不在同一直线,则根据已知条件无法求解)

在平行四边形ABCD中,对角线AC,BD相交于点O,直线EF经过点O,且分别交AB,CD于点E,F.

S平行四边形AEFD=S平行四边形BCFE证明:由已知可得:∠AOE=∠FOC,∠AEO=CFO,且点O为EF的中点故:三角形AEO=三角形DOF[角边角定理]同理可得:三角形ADO=三角形CBO,三

如图所示,四边形ABCD中,AC.BD相交于点O,OA=OC,OB=OD,

相等:四边形ABCD中,AC.BD相交于点O,OA=OC,OB=OD,可以判断三角形OAD全等于三角形OCB,角BCO等于角DAO,从而得出三角形OAE全等于OCF,所以OE=OF

如图所示,已知四边形ABCD是正方形,对角线AC,BD相交于点O,四边形AEFC是菱形

本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH

平行四边形ABCD的对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD交于点E,F

当直线AC绕O点顺时针旋转45°时四边形BEDF是菱形∵平行四边形ABCD∴AD‖BC,BO=DO∴∠BEO=∠DFO,∴在△BOE与△DOF中,∠BEO=∠DFO,∠BOE=∠DOF,BO=DO∴△

如图,平行四边形ABCD的对角线AC与BD相交于点O,直线EF过点O,且与AB,DC分别相交于点E和点F,直线GH过点O

∵ABCD为平行四边形,可得:∠OBE=∠ODF,OD=OF∵∠BOE与∠DOF为对角,所以∠BOE=∠DOF∴△BOE≌△DOF(角边角)∴OE=OF同理可证OH=OG∴可得四边形GEHF是平行四边

如图所示,四边形ABCD为平行四边形,对角线AC,BD相交于点O,过O作直线EF分别交AD,BC于点E,F,求证:四边形

证明:因为四边形ABCD是平行四边形所以OD=OBAD平行BC所以角OED=角OFB角ODE=角OBE所以三角形ODE和三角形OBF全等(AAS)所以ED=BF因为AD平行BC所以四边形BEDF是平行

如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于点E,F.

(1)证明:因为四边形ABCD是平行四边形所以OA=OCAD平行BC所以角OAE=角OCF角OEA=角OFC所以三角形OEA和三角形OFC全等(AAS)所以OE=OF(2)结论成立证明:因为四边形AB

如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F

证明:因为四边形ABCD是平行四边形所以DO=BO,DC∥AB所以∠FDO=∠OBE又因为∠DOF=∠BOE,DO=BO所以△DOF≌△BOE(SAS)所以OE=OF2)由△DOF≌△BOE得DF=B

如图所示,直线AB与CD相交于点O.下列说法不正确的是(  )

A、若∠AOC=90°,则AB⊥CD,说法正确;B、若AB⊥CD,垂足为O,则∠BOD=90°,说法正确;C、当∠COB=90°,称AB与CD互相垂直,说法正确;D、AB与CD相交于点O,点O为垂足,

平行四边形ABCD的对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC.AD于点E、F.

∵AB‖BC∴∠OAF=∠OCB∵OA=OC,∠AOF=∠COE∴△AOF≌△COE∴AF=EC当EF⊥BD时,四边形BEDF是菱形由⑵的证明知AF=EC∴BE=DF∵BE‖DF∴四边形BEDF是平行

如图所示,菱形ABCD的对角线相交于点O,AE∥BD,BE∥AC,AE,BE相交于点E,当菱形ABCD满足什么条件,

当AC=DB时,四边形OAEB是正方形理由:∵AE∥BO,BE∥AO,∴四边形OAEB是平行四边形,又∵四边形ABCD是菱形,∴AC⊥DB.∴∠AOB=90°,∴平行四边形OAEB是矩形.又AC=BD