如图所示 点p是正方形abcd内一点,连接AP,BP,CP,将三角形PAB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:55:52
如图所示 点p是正方形abcd内一点,连接AP,BP,CP,将三角形PAB
如图所示,点P是正方形ABCD内一点,且△PBC是等边三角形,则∠PAD

∠PAD=60度因为△PBC是等边三角形所以∠PBC=∠PCB=∠BPC=60度所以∠APD=∠BPC=60度所以∠PAD=60度

设P是正方形ABCD内一点,点P到顶点ABC的距离分别是1、2、3,求正方形的边长.

将△BPC绕点B逆时针方向旋转至△BEA,连EP,所以EP=2根号2,又EA=3,AP=1,AD^2+EP^2=AE^2,故△AEP是直角三角形,故∠APE=90,所以∠APB=90+45=135,由

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

设P是正方形ABCD内的一点,点P到顶点A、B、C的距离分别是1.2.3,求正方形的边长.

还在线等答案吗?正方形边长为二分之根号二减根号六!再问:是的!再答:不知道你能不能看到!!

已知,点P是正方形ABCD内的一点,连接PA、PB、PC.

如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d[标签:papb,正方形,abcd]二、如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d1.将△PAB绕点B顺时

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形ABCD面积为12 三角形ABC是等边三角形 点E在正方形ABCD内 在对角线AC上有一点P,使PD+PE的和最小

根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.

有一个地方不懂如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.

如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BDAB=AD=A=BC=CD=√16=4∵△ABE是等边三角形∴AB=BE=AE=4要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对称点恰好是B

如图所示,点E是正方形ABCD内一点.

这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE'       135°

如图所示,点P是正方形ABCD内一点,且△ABP是等边三角形,DP的延长线交BC于G,求角PCD的度数.

三角形ABP为等边三角形那么三角形ADP和三角形DPC为等腰三角形∠APD=(180-∠DAP)/2=(180-30)/2=75∠PCD=∠PDC=90-∠ADP=90-∠APD=90-75=15希望

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

已知P点是正方形ABCD内的一点,连接PA,PB,PC

(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=π/4(a^2-b^2);(2)连接PP′,根据旋

有分、已知P点是正方形ABCD内的一点,连接PA\PB\PC.PB

把ΔPAB绕B旋转,使AB与AC重合,P点落在P',连PP'.易得等腰直角三角形PBP',PP'=4√2,∠PP'C=90,PC^2=(4√2)^2+2^2,PC=6

如图,点p在正方形abcd内,△bpc是正三角形,若△bpd的面积是根号3-1,求正方形abcd的边长

设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(

已知点P是正方形ABCD内的一点,连接PA,PB,PC。将△

解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积