如图所示 在四棱锥s abcd中,SD⊥平面ABCD,AB平行DC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:14:15
如图所示 在四棱锥s abcd中,SD⊥平面ABCD,AB平行DC
在四棱锥的四个侧面中,直角三角形最多可有 ______个.

如图底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形.故答案为:4.

在四棱锥P-ABCD中,PA垂直于平面AC.且四边形ABCD是矩形,则该四棱锥的四个侧面中有几个直角三角形,为什么

PA垂直于平面AC.PA垂直于AB,三角形PAB是直角三角形PA垂直于AD,三角形PAD是直角三角形PA垂直于BC,AB垂直于BC,BC垂直于平面PABBC垂直于PB三角形PBC是直角三角形同理三角形

如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

如图所示,四棱锥P—ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直.

取N为PA中点,连接MN;由已知可得PC=BC=PD=2,所以平面PBC为等腰三角形又M为PB中点,所以CM⊥PB同理可证:DN⊥PA所以平面CDNM⊥PAB,所以可得平面CDM⊥平面PAB.

如图,在四棱锥S-ABCD中,底面ABCD是正方形,

第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,

在四棱锥PABCD中,四边形ABCD是菱形PA=PC E为PB中点

你可以画个草图分析1,连接BD交AC、于F点,再连接EF在三角形PBD中EF卫中位线所以EF平行于PD所以PD平行平面AEC2连接PF因为PA=PC所以三角形PAC为等腰三角形所以PF垂直于ACAC垂

四棱锥 SABCD 底面ABCD为正方形,测棱SD垂直底面 E,F为AB SC 中点 求证 EF//平面SA

证明:因为侧棱SD垂直底面ABCD,所以,SD垂直于AD,SD垂直于CD.又因为底面是正方形,CD垂直于AD,故CD垂直于平面SAD.作CD的中点G,连接EG,FG.因为ABCD是正方形,E是AB的中

如图所示,在四棱锥P-ABCD中,底面ABCD 是平行四边形,E为侧棱PC上一点,且PA//平面BDE,求PE:PC的值

连结BD和AC,交于O,连结OE,∵四边形ABCD是平行四边形,∴O是AC的中点,(平行四边形对角线互相平分)∵PA//平面BDE,平面PAC∩平面BDE=OE,∴PA//OE,∴OE是三角形CAP的

如图所示,在四棱锥P-ABCD中 底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD,点E为BC中点

图中B、C点标反了,E为BC的中点,也画的不对,⑴、ABCD为菱形,——》∠DAB=60°=∠DCB,DA=DC=BA=BC——》△DBC为等边三角形,E为BC中点,——》DE⊥BC,——》DE⊥AD

如图所示,在四棱锥P-ABCD中,平面PAD垂直于底面ABCD,PA等于PD等于2,AD等于2倍根号2

1、取AD中点G,连接PG,GB.△PAD为等腰直角三角形,则PG⊥AD,PG⊥面ABCD.∵菱形ABCD中,∠DAB=60,连接BD,则△ABD为等边三角形.∴BG⊥AD,又∵PG⊥AD∴AD⊥面B

已知四棱锥P-ABCD的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是(  )

因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的一个顶点,底面边长分别为3,2,后面是直角三角形,直角边为3与2,所以后面的三角形的高为:12×3×2=3,右面三角形是直角三角形,直角边长

在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB//DC,角DAB=90°

你要求什么呢?再问:PA=AD=DC=1,AB=2,��һ����֤:MC//ƽ��PAD再答:���������������ðɣ�再答:M�������再问:MΪPB�е�再问:再答:��һ�ᰡ再

在底面是平行四边形的四棱锥P--ABCD中,

(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC   又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E

在梯形ABCD中,CD平行EF平行AB,CD=2,AB=4,EF平分Sabcd

ef分abcd为两个梯形h1为abef的高,h2为fecd的高因为Sabef=Sfecd所以面积相等(4+ef)h1/2=(2+ef)h2/2高与梯形上下底的比例关系,相似三角形原理(ef-2)/h2

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE(1)证明:

(1)连接AD,因为,PA垂直平面ABCD,AD属于平面ABCD,所以BD垂直于PA;因为ABCD为矩形,BD垂直于AC,AC属于平面PAC,所以BD垂直于AC所以BD垂直于平面PAC (2

立体几何 四棱锥P-ABCD中,

用线面垂直证线线垂直,BC垂直CD且BC垂直DP,BC垂直面CDP,所以BC垂直CP.底面积是直角梯形,面积是3/2,再乘PD,除以三.体积是0.5

在四棱锥P-ABCD中,底面AB

解题思路:确定好各点的坐标。解题过程:最终答案:略

如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积

ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2