如图所示 圆o的内接三角形,角bac=45,角abc=15
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:47:29
三角形的重心应该是圆的圆心
三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C
显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²
画三条边的中垂线,交点O即△ABC的外心.连接半径OA、OB;∵△OAB为底边△(已知OA=OB;圆心角∠AOB=2×同弧上的圆周角∠ACB=60º);∴半径=AB=6.
连接AO,BO则∠AOB=60度(同弧所对圆心角,是其圆周角的2倍),即△AOB是等边三角形,即圆半径等于1其内接正方形边长等于根号2即内接正方形面积为2
1.画一个圆0,随意再画一个内角为60度的内接三角形.连接AO并延长与圆相交于D,连接DC,则DC垂直于AC,根据同弧所对的圆周角相等,角ADC=角B=60度,因为AC=12,所以AO=8根号3,O到
连接AO,BO,则:三角形AOB为等腰三角形角BAO=角ABO角AOB=180度-角BAO-角ABO=180度-2*角ABO角ABO=90度-(1/2)角AOB因BE是切线,角EBO=90度角EBA=
以直径为一边的圆内接三角形,其直径所对的角为90度.这是个定理.所以角b=90-20=70度
连接OC,OB因为pc,pb是圆O的切线所以
延长AO与BC交于M因为AB=ACAM⊥BC∠AOC=∠AOB=135∠BOC=90OB=Oc=√2BC=2,OM=1AM=√2+1面积=√2+1
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
用正弦定理AC/sin30度=2RR为半径,R=2
连结OB、OC、BM∵BC‖x轴∴DM垂直平分BC∴∠OMB=∠OMC∠BOD=∠COD=1/2∠BOC=∠BAC∴∠BON=∠MAN∴△BON∽△MAN∴∠OBN=∠AMN=∠OMC=∠OMB∴△B
我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π
连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2
如图,圆周角B=1/2<AOC=<AOD,AD=2,sinB=2/5AE=ABsinB=12/5
到三个顶点的距离相等的,就是内接三角形,你可以将三个顶点到对边中点的连线相交,就是这个外接圆的圆心.
答案为:4加(4倍根2)
三角形内接,三角形在内
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B