如图所示 A B是圆o上的两点 角aob=120
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:38:44
带等量异号电荷的电场的电场线如图:可以看出C、D两点的电场强度大小相等、方向相同;沿着电场线电势减小,D点电势一定大于C′点电势,而C点电势等于C点电势,故D点电势一定大于C点电势;故选B.
∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,
证明:过O作OE⊥AB于E,则AE=BE,(4分)又∵AC=BD,∴CE=DE.∴OE是CD的中垂线,(6分)∴OC=OD. &n
如图AB = 50, O1C = 7(圆O1的半径), O2D = 20(圆02 的半径)则0102的距离的平
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.
解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱
解题思路:连OC,由C是弧AB的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根
证明:在○O’中∵AB是弦,OE是半径∴弧AO=弧BO∵∠OAB=∠OCB,∠OCB=∠ACO∴∠OAB=∠ACO∵OC是直径,OC⊥AB∴∠OAC=90°,∠ODA=90°∴△OAD∽△OCA∴OA
证明:连接OA,OB.OA=OB,则∠OAB=∠OBA.又OC=OD,则∠OCD=∠ODC,即∠OAB+∠AOE=∠OBA+∠BOF.所以,∠AOE=∠BOF,得弧AE=弧BF.
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
E是PB中点证明:当E是PB中点时,则DE∥BC∵C在圆上,AB是直径,∴BC⊥AC∵PA⊥面ABC,∴PA⊥BC∴BC⊥面PAC,∴DE⊥面PAC
证明:过O作OH⊥AB,则H为AB中点 ∵OC=OD,∴H为CD中点 ∴AC=BD&
等量同种电荷的电场线和等势线都是关于连线、中垂线对称的,所以C、D两点的场强和电势大小相等,但场强的方向不同,A错误B正确.C、D在同一个等势面上,所以CD间移动电荷电场力一定不做功,所以C正确,D错
连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
1)与角ACO相等的是角BCO2)点P和点O连线,与圆P的交点,记为C下证明之,连接AC,AO,因为CO为圆P直径,所以角CAO=90°.因为AO是圆O半径,所以AC是圆O切线3)半径之比为1比1,证
AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=