如图平面直角坐标系半径为2的圆p
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:58:00
注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形
①连接PB,可知线PB垂直于AB,则PB平行于MO,又因为MO分别为AP,AB中点,根据中位线定理,PB=2MO=4,根据勾股定理,BO=AO=4²-2²=12开根号=2根号3所以
设圆与x轴正半轴交于点E,连接DE;过点D做DF⊥x轴于点F.在RT△AOC中,∵OA=2,OC=OB/2=1∴∠OCA=30°∵AE是直径∴∠ADE=90°,∠DEF=60°∴DE=AE/2=2∴在
提示:连接OQ,OP;则OP²=OQ²+PQ²=1+PQ²即PQ=√﹙OP²-1﹚当PO取到最小值时PQ有最小值,于是作OC⊥AB于C;AB=√﹙OA
1,第一问很简单我就不说了,斜率之积是-1,CO⊥AB2,分两种讨论y=-x+2,令y=0,得A(2,0)令x=0,得B(0,2)点O到AB的距离为√2,所以OP∈[√2,2]当P在点B时,此时三角形
1,oc斜率是1,AB斜率是-1,所以垂直2,设p为(x,y),第一种情况:线段长度OP=OA,此时P和B重合第二种情况:线段长度OP=PA,此时P(1,1)第三种情况:线段长度AP=OA3,肯定有两
答案B相切于第二象限再问:为什么再答:y=x-√2当y=0,x=√2当x=0,y=-√2△xOy是等边直角三角形过O做垂线y=x-√2于A点,连接OA可求得OA=1=r
当直线与圆相切时则此时x最大,设切点为F,连FO即OP,在三角形中解得x最大为2倍根2则范围[0,2倍根2]
圆的方程为x^2+(y-1)^2=4圆心到直线的距离d=|-1+m|/√2若d=|-1+m|/√2=2,即m=1±2√2,直线与圆相切若d=|-1+m|/√2>2,即m>1+2√2或m<1-2√2,直
A(1-√3,0),B(1+√3,0).设抛物线的解析式y=ax²+bx+c对称轴x=(x1+x2)/2=1,与园的焦点P(1,3)(另一交点舍去),a+b+c=3-b/2a=1,c/a=x
(1)连接AF,圆心与切点所成半径垂直于切线,所以△AFC为直角三角形,角AFC为直角因为A点坐标为(-1,0)所以园A半径为1,所以AF的长度为1,根据勾股定理得AC为√5,C点坐标为(√5-1,0
(1)连接AF,因为FC为圆的切线,所以AF垂直FC,AF=OA=1,CF=2,所以根据勾股定理得AC=根号5,所以OC=根号5-1,C点坐标为(根号5-1,0)(2)因为EF和EO都为圆的切线,所以
2009年山东潍坊的压轴题、
从A往下作垂直交MN线于H点因为A(2,1),所以AH=1因为AM=半径r=2所以MH=根号3所以MN=2根号3因为C是CP与圆A的交点,所以AC垂直于CP,所以∠ACP=90°因为∠CAP=60°且
1.CE与圆有三种位置关系,相交,相切和相离2.当直线CE与与圆相切时,∵C为直线BC与Y轴的交点∴C(0,4),设直线CE的斜率为k那么直线CE的方程为y-4=kx即y=kx+4圆A的方程为x
过点C向x轴作垂线交于点D,所以CD为1,在直角三角形BCD中,勾股定理可得BD为根号3,所以A的坐标为(1-根号3,0)B为(1+根号3,0),AB为2倍根号3,P为(1,3),抛物线解析式为y=-
如图,设∠COB=α,OB=2/cosα.OA=2/sinα.AB=OA×OB/OC=4/[2sinαcosα]=4/sin2α.当α=45°时,AB有最小值4.
A点坐标为(0,2)(1)证明:P(4,2)与A点连线的解析式为y=2①,与圆的解析式x²+y²=2²②联立方程组,①代入②得到x²=0,解得x=0,y=2,该