如图已知等边三角形ABC和等边三角形cde,p,q分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:34:58
如图已知等边三角形ABC和等边三角形cde,p,q分别是
已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

在△ACD和△ABE中AC=AB∠CAD=∠BAEAD=AE∴△ACD≌△ABE(SAS)∴EB=DC

如图,已知△ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边△ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

已知:如图,△ABC和△ADE都是等边三角形,求证:EB=DC

证明:,△ABC和△ADE都是等边三角形所以角CAB=角BAE=60度,AC=AB,AD=AE所以三角形CAD全等于三角形BAE(边角边)所以EB=DC

已知,如图,△abc和△ade都是等边三角形求证,eb=dc

证明:三角形ABC和三角形ADE是等边三角形,则AD=AE,AB=AC,角CAD=角BAE,则三角形CAD全等于三角形BAE,所以,EB=DC

如图,已知三角形ABC和三角形BDE都是等边三角形,求证AD=CE

△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE

已知,如图,△ABC和△CDE都是等边三角形,

1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC

如图所示,已知三角形abc中,以ab,ac为等边像外作等边三角形abf和等边三角形ace,连接be,cf,交于点d,

如图,即证∠1=∠2∵等边△ABF与等边△ACE中AF=AB,AC=AE,∠FAB=∠EAC=60°∴∠FAB+∠BAC=∠EAC+∠BAC即∠FAC=∠BAE∴△FAC≌△BAE∴FC=BE,△FA

如图,已知△ABC和△DEC均为等边三角形 试说明AD=BE

△ACD和△BCE中AC=BC,CD=CE,角ACD=角BCE=60°+角ACE所以△ACD≌△BCE,从而AD=BE

几何题 如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,CE=BD,求△ADE是等边三角形

:∵CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DAE

已知,如图,△ABC和△ADE都是等边△.求证:EB=DC(稍后发图)

不用图也可以解出来,只要证明三角形ABE全等于三角形ACD即可,AB=AC,AD=AE,角EAB=角DAC(具体情况看图,就是利用角BAC=角EAD加或减同一个角所得)

如图,已知三角形ABC为等边三角形,AD=BE=CF,CD.AE.BF分别相交于点M.N.P.求证:三角形MNP为等边三

∵三角形ABC为等边三角形∴AB=BC=CA,∠A=∠B=∠C又,AD=BE=CF∴△ABE≌△BCF≌△CAE∠BAE=∠CBF=∠ACD,∠AEB=∠BFC=∠CDA∴∠AMD=∠BNE=∠AMD

如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OA

(1)作BM垂直x轴CN垂直x轴则OM=2ON=1BM=2根号3CN=根号3所以C(1,根号3)代入y=k/x得k=根号3所以y=根号3/x(2)作EM1,DN1垂直X轴设AN1=a,则AM1=2aE

已知如图ABC三点共线,以AB、BC为边,分别作等边△ABD和△BCE.

(1)在△ABE和△DBC中,有DB=AB,BE=BC(等边三角形),∠ABE=∠DBC=120°∴△ABE≌△DBC(SAS0∴AE=CD(2)因题意,∠MBN=60°(180°-60°-60°)又

如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,且∠ADE=60°,求证:△ADE是等边三角形

△CDE是等边三角形,△ADE不可能是等边三角形再问:E是独立的点,哪条边上都没连ED和AE图在http://zhidao.baidu.com/question/183215128.html但是我这个

如图,已知点D是等边△ABC的边BC延长线上的一点,∠EBC=∠DAC,CE//AB,求证:△CDE是等边三角形

∵CE//AB∴∠ECD=∠ABC=60∵∠ACB=60∴∠ACB=∠DCE∴∠BCE=∠ACDBC=AC∠EBC=∠ACD∴△BCE≌△ACDCD=CE∵∠ECD=60∴△DCE是等边三角形

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

已知:如图,AB、BE、CF是等边△ABC的角平分线.求证:△DEF是等边三角形.

∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴

如图,等边△ABC和等边△DCE在直线BCE的同侧,AE交CD于P,BD交AC于Q,求证△PQC为等边三角形

证明:△ABC和△DCE是等边三角形BC=AC∠ACB=∠DCECD=CE△BCD≌△ACE∠QBC=∠PAC在△APC和△QBC中∠QBC=∠PACBC=AC∠QCB=∠PCA△ACP≌△BCQCQ

1如图,已知ΔABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边ΔADE .

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,