如图已知正方形ABCD中E F分别是AD DC边上的点且AE=DF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:02:20
如图已知正方形ABCD中E F分别是AD DC边上的点且AE=DF
如图在多面体abcdef中已知平面abcd是边长为三的正方形ef平行ab,ef等于二分之三,且ef与平面abcd的距离为

V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!

如图,正方形ABCD中,EF⊥GH,求证:EF=GH.

证明:将GH沿BA方向平移,使G与A重合,将EF沿AD方向平移,使E与D重合,则GH=AN,EF=DM,∵EF⊥GH,∴GH⊥AN,即∠4=90°,∴∠1+∠3=90°,∵四边形ABCD是正方形,∴∠

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=32,EF与面AC的距离为2,则该多面

法一:如下图所示,连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=13×3×3×2=6,又∵整个几何体大于四棱锥E-ABCD的体积,∴所求几何体的体积V求>VE-ABCD,法二:分别取AB、C

如图,已知正方形ABCD中,角EAF=45°,求证:EF=BE+DF.

证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

已知:如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,E、F是垂足.求证EF=PD

过P作PM⊥CD,PN⊥AD∵AC是正方形对角线∴PM=PF,PE=PN∵PM⊥CD,PN⊥AD∴PNDM为矩形∴PN=DM∴PE=PN=DM∵PM=PF,PE=PN=DM∠PMD=∠FPE=90°∴

如图在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF‖AB,EF=2.

作ER⊥AD  FS⊥BC则ER=FS=√3/2  RS∥AB∥EF  ERSF是等腰梯形,作RG⊥EF  SH⊥EF&

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CF⊥EF

已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.证明方

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,四棱锥E--ABCD的高为2

连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=1/3×3×3×2=6,又∵整个几何体大于四棱锥E-ABCD的体积,∴所求几何体的体积V求>VE-ABCD,故选D.

如图,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥面ABCD,

如图,多面体分为三棱柱BCF-MNE(底面为BCF,高位EF)和四棱锥(底面AMND,高FH)体积=1/2BC*FH*EF+1/3AM*MN*FH=BC*FH(EF/2+AM/3)=3*2*(1/3+

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF平行AB,EF=3/2,EF

从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形.   V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3&#

如图,多面体ABCDEF中,已知ABCD是边长为4的正方形,EF平行平面ABCD,EF=2,EF∥AB 平面FBC⊥平面

简单写一下哈:(1)∵ABCD是正方形,M、N是AB、CD中点∴MN∥BC∵MB=2=EF,EF∥AB∴BFEM是平行四边形∴ME∥BF∵MN∩ME=平面MNE,BC∩BF=平面BCF∴平面MNE∥平

如图,已知正方形ABCD中,若EF垂直于GH,请说明EF=GH

过点G向AD做垂线,交AD于M;过点E向DC做垂线,交DC于N:EF垂直于GH,AD垂直于DC,则角AHG=角DFE;角GMH=角ENF=90°,角MGH=角NEFEN=GM;三角形MHG全等于三角形

如图 正方形ABCD中 EF MN是两组对边截得的线段

图呢.再问:没...再答:是相等的,我原先证过,可以证出来

如图,在空间几何体ABCD--EF中,底面ABCD为正方形,EF//AB,EA//EF,AB=2EF,<AED=90.,

看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������

如图,已知在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF

延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------

如图正方形ABCD中E,F是BC,DC的中点求证AE⊥EF

稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM