如图已知三角形adc内切于圆o且ab=ac直径ad交bc于点e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:11:41
∵DP平分ADC∴∠ADP=∠CDP∵∠ADP,∠ABP是弧AP所对圆周角∴∠ADP=∠ABP(同弧所对的圆周角相等)∵ABCD内接与圆∴∠EBP=∠CDP(圆内接四边形对角等于邻补角)∴∠ABP=∠
(1)∵AD=AE,∠ADC=∠AEB,又∠A=∠A,∴△ABE≌△ACD,∴CD=BE,AB=AC,∴∠ABC=∠ACB,∵∠ADC=∠AEB,∴∠EBC=∠DCB;(2)证明如下:∵AD=AE,∠
连接OD、OE、OF、OA、OB、OC∴OD⊥AB、OE⊥BC、OF⊥AC由已知得S△ABC=1/2AB*BC*sin∠B=15√3/4而S△ABC=S△ABO+S△BOC+S△AOC=1/2AB*r
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
关于如图,三角形ABC内接于圆O
再答:亲,满意请采纳,谢谢,不懂可追问。再问:已知30度的直角三角形是短边=第三边的1/2,但Sin、Cos、tan还没学,亲!再答:那就用这个定理:30度所对的边是邻边的一半。然后剩下一边用勾股定理
证明:连接DF,EF因为圆O内切于三角形ABC,切点分别为D、E、F所以根据弦切定理有:∠EDF=∠CFE,∠DEF=∠BFD,BF=BD,CF=CE因为FG垂直于DE于点G所以DG=DF*cos∠E
其实这个好做,利用相似把分母化为一样的:第一题和第二题是一样的做我只做第一题,第二题留给你练手;因为:(相似我就不证明了,我直接说)GF/AC=0F/BC=BH/BCPE/AB=0E/BC=QC/BC
(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.
连A0并延长交BC于M因为;AB=AC弧AB=弧AC又因为;AO过圆心所以;AM垂直并平分BC所以;BM=CM=4又因为;直角三角形BMO所以;B0的平方+MO的平方=0B的平方设半径为X(3-x)*
连结CE,BD,∵PA、PB分别切圆O于A、B,∴弧AC=弧BC∴∠CDB=∠ADC=30°,又∵∠EFD=∠BFD=Rt∠,DF=DF∴△BFD≌△EFD∴EF=BF=1/2BE=2,BD=ED在R
证明:∵∠B=∠D=90°,BC=CD,AC=AC∴△ABC≌△ADC(HL)
证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
没图,答案初步计算应该是25π/9.
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行