如图已知三角形ABC,三角形DCE三角形FEG是三个全等的等腰三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:49:35
如图已知三角形ABC,三角形DCE三角形FEG是三个全等的等腰三角形
如图,已知:三角形ABC中,BC

∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm

如图,已知三角形abc的面积为56平方厘米ac等于十四厘米,三角形abc为等腰直角三角形,且d为bc的中点,求三角形ad

你们学相似了吗?再答:平行线学了吗?再问:学了,学了,刚才说错了再问:学了再答:哦我说的呢再答:等等再答:DE是不是垂直于AC啊再答:e是怎么来的再问:是再答:

已知:如图,AB平行于CD,角B等于角D.求证:三角形ABC全等于三角形CDA.

已知AB平行于CD,得角ABC=角ACD(2直线平行,内错角相等).在三角形ABC与三角形ACD中:{角B=角D(已知){AC=AC(公共边){角BAC=角ACD(已证)所以三角形ABC全等于三角形A

如图,已知三角形ABC是等腰三角形,角ABC等于90度,AB等于10,D为三角形ABC外一点,连接AD,BD,过D做DH

DE=DH-EH,由于EH平行于BC,所以AEH相似于ABC,且由于AH=1/2AB,所以EH=1/2BC=1/2AB=5,又ADB是等边三角形,所以AH=5,AD=10,DH=5倍根号3,所以DE=

如图:已知B、C、D在一条直线,三角形ABC和三角形CDE为等边三角形,求证AD=BE

∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边

如图,已知AB=AD,AC=AE,求证三角形ABC全等三角形ADE,角B=角D

证明:因为AB=ACAC=AE角A=角A所以三角形ABC和三角形ADE全等(SAS)所以角B=角D

已知:如图,三角形ABC中,D、E、F分别为BC、AD、CE的中点,S三角形ABC=4cm²,求S三角形BEF

  (1)因为F是CE的中点,所以△BEF与△BCF等底同高,面积相等.(2)因为D是BC的中点,所以△ABD与△ACD等底同高,面积相等;同理△EBD与△ECD面积相等.所以△A

如图,已知三角形ABC及三角形ABC外一点B,平移三角形ABC,是点A移动到点D,并保留作图痕迹

1.用虚线链接AD连点2.以B点为顶点,用虚线向右做AD的平行线BB',且让BB'=AD3.以C点为顶点,用虚线向右做AD的平行线CC',且让CC'=AD4.用实线依次连接点D,B',C'即可

已知:如图,在三角形ABC和三角形DEF中,AB=DE,AC=DF,∠A=∠D,求证:三角ABC全等三角形DEF.

证明:∵在△ABC和△DEF中AB=DE(已知)∠A=∠D(已知)AC=DF(已知)∴△ABC≌△DEF(SAS)

如图,已知点D、E分别在三角形ABC的边AB、AC上.

(1)DE平行于BC,三角形ABC相似于三角形ADE由于△ADE和△BDE底分别为AD和DB,两三角形高相同,所以面积比等于两个底之比即S△ADE/S△BDE=AD/DB.设三角形BDE的面积为x.可

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,已知三角形abc中

解题思路:过A作AD⊥BC于D,设BD=x,则CD=BC-BD=7-x,根据勾股定理计算出BD,得AD=BD,从而求出∠B解题过程:

已知,如图,三角形ABC中,角ABC=45度,CD垂直AB于D,BE平分角ABC

(1)△BDF≌△CDA——>BF=AC=2CE(2)过H做△BDC的中位线交BF于M,则BG>BM=BF/2=CE

已知,如图,三角形ABC中,

来图我告诉你.∵∠DCE=∠D+∠DBE∠ACE=∠A+∠ABE又∵∠DCE=1/2∠ACE∠DBE=1/2∠ABE∴∠A=∠ACE-∠ABE=2(∠DCE-∠DBE)=2∠D∴∠D=1/2∠A=1/