如图已知三棱锥s-abc中,sa=sb=ca=cb=根号3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:36:11
如图已知三棱锥s-abc中,sa=sb=ca=cb=根号3
如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥AC

证明:(1)∵SA⊥底面ABC∴SA⊥AB∵AB⊥AC∴AB⊥平面SAC(2)如图,做AD⊥BC,交点为D,连接SD,做AE⊥SD,交点为E∵SA⊥底面ABC∴SA⊥BC∵AD⊥BC∴BC⊥平面SAD

如图所示,已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.求证:平面ABC⊥平面ASC.

取AC中点D.连接SD.BD求证:∠SDA是90°(明白?)证明:∵D是AC的中点∠ABC是90°∴AD=DC=DB又∵SA=SB∴▷SAD全等于▷SBD又∵SA=SC.D是A

如图,三棱锥S-ABC中,M,N,E,F分别为棱SA,SC,AB,BC的中点,试判断直线MN与直线EF是否平行

平行证明∵M是SA中点,N是SC中点∴MN//AC∵E是AB中点,F是BC中点∴EF//AC∴MN//EF很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请点击“采纳为满意答案”

已知:如图,凸五边形ABCDE中,面积S三角形ABC=S三角形BCD

就证明这是个正五边形,就是看边长a是多少,面积=a^2*Sin72(1+1/(4*Cos72))ABCDE的

如图,在正三棱锥S-ABC中,M、N分别为棱SC、BC的中点,并且MN⊥AM,若侧棱长SA=,则正三棱锥S-ABC的外接

连接AN,MN//SB(M.N分别是SC.BC的中点)SB⊥SB得SC⊥MNAN是三角形ABC的高AN⊥SC由上所得SC⊥面AMNAS⊥CS(话说SA=?你到是打出来啊!给一半题目让人怎么做?)

在三棱锥S—ABC 中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A 出发沿三棱锥的

画1/4的圆,圆心S,弧AA',B,C为弧AA'的三等分点,连接AB,BC,CA',展开图为多边形SABCA',连接AA',最短路程=AA'AA'²=SA²+SA'²=1

高中立体几何已知正三棱锥S-ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得的截面如下图,则三棱锥的

因为此图为SOA平面截球和三棱锥得到的,所以可以确定点O就在平面ABC上.SA为正三棱锥的侧棱,长度为6√2由于O在△ABC上,由S-ABC为正三棱柱,可以确定O即为等边△ABC的中心,由此可以计算得

如图,在三棱锥S-ABC中,OA=OB,O为BC中点,SO⊥平面ABC,E为SC中点,F为AB中点.

证明:(1)取AC的中点G,连接OG,EG,∵OG∥AB,EG∥AS,EG∩OG=G,SA∩AB=A,∴平面EGO∥平面SAB,OE⊂平面OEG∴OE∥平面SAB.(2)∵SO⊥平面ABC,∴SO⊥O

已知在三棱锥S-ABC中,SA,SB,SC,两两互相垂直O点为底面三角形ABC的垂心,求证SO垂直平面ABC

证明,设DEF,分别S在是BC,CA,AB上的垂足,D'是AO与BC的焦点很容易有BD^2-CD^2=SB^2-SC^2BD-CD=(SB^2-SC^2)/BCBD'^2-CD'^2=AB^2-AC^

在三棱锥S-ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面

将三棱锥S-ABC沿侧棱AS展开,其侧面展开图如图所示,由图中红色路线可得结论.故答案为:2

已知三棱锥S-ABC中,SA=SB=SC=AB=AC=2,则三棱锥S-ABC体积的最大值为 ______.

如图,三棱锥S-ABC中,SA=SB=SC=AB=AC=2,三棱锥S-ABC的体积为:VS-ABC=VB-SAC,当且仅当平面BAS⊥平面SAC时,三棱锥S-ABC的体积最大,此时,在平面BAS中,作

如图,已知三角形ABC中,DE平行于BC,且S△ABC比S△CDE=1:3,求S△ADE:S△DBC

由条件:设△ABC的面积为单位1,有△EDC=3(面积,下同),设△DBC=x,AC=a,AE=b,∵BC‖DE,∴△ABC/△ADE=a²/b²(1)得:1/(1

如图在三棱锥S-ABC中SA平面ABC 且SA=AB SB=BC ∠ABC=90°求二面角B-SC-A的大小

应该是SA垂直于面ABC吧?设SA=AB=1,则SB=BC=根号2.又知角ABC=90度,所以AC=1.即SAC为等腰直角三角形.作AD垂直SC于D,易知AD垂直于SC,角ADB即为所求二面角.AD=

#高考提分#如图所示,已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.求证:平面ABC⊥平面ASC

取AC中点D.连接SD.BD∵D是AC的中点∠ABC是90°∴AD=DC=DB又∵SA=SB∴▷SAD全等于▷SBD又∵SA=SC.D是AC的中点∴∠SDA=90°∴SD⊥面A

二道几何题 1.如图,PA⊥平面ABC,平面PAB⊥平面PBC,求证:AB⊥BC2.在三棱锥S-ABC中,已知AB=AC

1.∵PA⊥面ABC∴面PAB⊥面ABC又∵面PAB⊥面PBC,且面ABC∩面PBC=BC∴BC⊥面PAB又∵AB属于面PAB∴BC⊥AB2.∵AB=AC,且O是BC的中点∴AO为△ABC的中线又∵A

如图,已知三棱锥S-ABC中,角ASB=角BSC=角CSA=90度,求证三角

依题意可得AB^2=SA^2+SB^2,AC^2=SA^2+SC^2,BC^2=SB^2+SC^2,2AB*BC*cos∠ABC=AB^2+BC^2-AC^2=2SB^2>0,所以cos∠ABC>0,