如图已知○O中弧AB=弧2CD,则AB与CD的关系是A,AB=2CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:29:05
如图已知○O中弧AB=弧2CD,则AB与CD的关系是A,AB=2CD
如图,已知AB,CD是圆O的两条弦,且AB=CD

∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚

如图,圆O中,AB,CD为直径,弦CE平行于AB,求证弧AE=弧AD

证明:连接AC  ∵∠AOD=∠BOC  ∴弧AD=弧BC  ∵弦CE‖AB  ∴∠BAC=∠ACE  ∴弧BC=弧AE  ∴弧AE=弧AD

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图,圆O中弦AB‖弦CD,求证弧AC=弧BD

连接OA,OB,OC,OD做OM垂直AB与M,延长交CD于N点因为AB//CD有ON垂直CD易得角AOM=角BOM角CON=角DON所以角AOC=角BOD等角对等弧所以弧AC=弧BD

如图 已知:圆O中 弦AB垂直于弦CD AB弧=CD弧 连结CO 延长CO 交AB于E 连结AO 交CD于点F 求证:

证明:(1)延长AO,交⊙O于N,延长CE,交⊙O于M,连接BN,DM则∠D=∠B=90°∵弧AC=弧BD∴弧AB=弧CD∴AB=CD∵AN=CM∴△ABN≌△CDM∴∠A=∠C∵∠A+∠AFD=90

如图已知⊙O中弦AB,CD与弦EF相交于GH,且EG=FH,∠1=∠2,求证AB=CD

∠1∠2在哪.应该是过O点做AB和CD的中垂线(垂足分别是M、N),连接OG和OH,证明△OGM≌△OHN,证明OM=ON,从而证明AB=CD.

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

已知 如图,在圆O中AB、CD是两条直径,弦AE//CD.求证弧BE=2弧AC

连结BC∵AE//CD∴∠COA=∠BAE而∠COA=2∠CBA∴∠BAE=2∠CBA∴弧BE=2弧AC

如图,已知在圆O中,AB=CD,AB、CD的延长线相交于圆O外一点P,求证PA=PC

证明:作OE⊥AB于E,OF⊥CD于F.则AE=BE;CF=DF.∵AB=CD.∴OE=OF;AE=CF.连接PO,则PO=PO,Rt⊿PEO≌RtΔPFO(HL),得PE=PF.故:PE+AE=PF

已知:如图,圆O中,直径CD垂直弦AB于E,弦BE平行CD.求证:劣弧AB=2弧DF.(第3题)

连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df

如图,圆O中的两条弧 弧AB=2弧CD 求证AB

证明:取弧AB的中点E,连接AE、BE∵弧AB=2弧CD∴弧AE=湖BE=弧CD∴AE=BE=CD∵AE+BE>AB∴2CD>AB即AB

已知如图在圆O中AD=BC,求证AB=CD

证明:连接BD∵AD=BC∴∠ABD=∠CDB【等弦所对的圆周角相等】∵∠A=∠C【同弧所对的圆周角相等】∴⊿ADB≌⊿CBD(AAS)∴AB=CD

已知:如图,⊙O中弦AB=CD.求证:AD=BC.

证明:∵AB=CD,∴AB=CD,∴AB-BD=CD-BD,∴AD=BC.

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

如图,已知AB、CD是⊙O的两条弦,如果AB=8,CD=6,弧AB的度数与弧CD的度数和是180°,那么图中阴影部分的总

如图:把弧CD旋转到点C与点A重合.∵弧AB和弧CD的度数和是180°,∴△ABD为直角三角形,且BD为圆的直径;∵AB=8,CD=6,∴BD=10(勾股定理),∴阴影部分的面积=S半圆-S△ABD=

已知:如图,在⊙O中,弦AB=CD.

证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.

如图,已知⊙O中,直径CD与弦AB垂直,垂足为E,CD=10,DE=2,求AB的长

连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8

已知:如图,在⊙O中M,N分别为弦AB,CD的中点,AB=CD,AB不平行于CD.

证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM