如图已知△BAD和三角形BCE均为等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:11:48
(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F∴CE=CF,在Rt△BCE和Rt△DCF中,∵CE=CF,BC=CD,∴Rt△BCE≌Rt△DCF(HL).(2)∵Rt△BCE≌Rt△
已知AC平分角BAD,所以角ACB=角ACD;又因为:CE垂直AB于E,CF垂直AD于F,所以角ACE=角ACF,CE=CF所以角ECB=角FCD所以三角形BCE全等于三角形DCF
(1)求证:△ABE≌△FDA证明:∵四边形ABCD是平行四边形∴AB=CD,∠ABC=∠ADC∵DF=DC∴AB=DF同理:EB=AD又∵∠EBC=∠CDF∴∠ABE=∠ADF∴△ABE≌△FDA(
结论:AE=BD∵△ACD和△BCE都是等腰直角三角形∴AC=CD,BC=CD∵∠ACD=∠BCE=90°∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB∴AE=BD
证明:因为∠BAD=∠BCE,∠ABD=∠CBE,所以△ABD∽△CBE,所以AB/CB=BD/BE,又∠ABD=∠CBE,所以∠ABD+∠DBC=∠CBE+∠DBC,即:∠ABC=∠DBE,所以△A
此题其实是为了一个重要性质而出:三角形两个内角的两条外角平分线与第三个内角的内角平分线交于一点!过F分别作FM⊥AB于M,FN⊥AC于N,FP⊥BC于P∴∠BMF=∠BPF=90°BF平分∠DBC,∴
∠CBE=∠ABD,∠BCE=∠BAD,则△ABD∽△CBE故有AB/CB=BD/BE即AB/BD=CB/BE又有∠ABC=∠ABD+∠DBC=∠DBC+∠CBE=∠DBE根据两边对应成比例且夹角相等
(1)利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证AE=BD(2)证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠
∵△ABC≌△BCE∴两个三角形之间的对应边为:AB与BC,BC与CE,AC与BE;对应角∠ABC与∠BCE,∠BAC与∠CBE,∠BCA与∠CEB.再问:努力!若△ABF≌△BEF,AB和DE是一组
∵∠EBC=∠CAD(同弧上的圆周角相等)=∠CAB(已知CA是角平分线),∠BCE是公共角;∴△ABC∽△BCE(三个角对应相等的二△相似).
(1)在△ABE和△DBC中,有DB=AB,BE=BC(等边三角形),∠ABE=∠DBC=120°∴△ABE≌△DBC(SAS0∴AE=CD(2)因题意,∠MBN=60°(180°-60°-60°)又
好!全等在△ADB和△CEB中BE=BD∠B=∠BAB=CB∴△ADB≌△CEB(SAS)
△ABC是等边三角形,AB=BC∠BAD=60+∠BDC,∠BCE=60+∠BDC,所以∠BAD=∠BCE△BDE是等边三角形,BE=BD所以△BAD和△BCE有两条边和一个角相等,(边角边),所以全
证明:∵CE⊥AB,CF⊥AD,AC平分∠BAD∴CE=CF(角平分线性质)又∵CE⊥AB,CF⊥AD∴∠CEB=∠CFD=90∵∠DCF=∠BCE∴△DCF≌△BCE(ASA)∴BE=CF
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°再问:十分感谢再答:可以推荐一下我吗?再问:太给力了,你的回答完美解决
角abd=角cbe,角bad=角bce,得三角形ABD∽三角形CBE.故角ABD=角CBE,BA/BD=BC/BE.则角ABC=角DBC,得三角形abc相似三角形dbe.
证明:(1)在△CBE和△ABD中,∵∠CBE=∠ABD,∠BCE=∠BAD,(1分)∴△CBE∽△ABD.(2分)∴BCAB=BEBD.(3分)∴BCBE=ABBD.(4分)即BCAB=BEBD;(
根据已知条件:角CBE=角ABD,角BCE=角BAD可以判定△ABD∽△CBD,所以AB:BD=CB:BE且∠ABD=∠CBE;而∠ABC=∠ABC+∠DBC;∠DBE=∠CBE+∠DBC,故∠ABC
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°