如图已知def分别是三角形bcacab上的中点求证ad向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:32:56
如图已知def分别是三角形bcacab上的中点求证ad向量
如图,已知AE等于DB,BC等于EF.BC平行EF.求证三角形ABC全等三角型DEF

.再答:这都不会再问:那你帮我坐一下啊再问:帮我做了就采纳再答:好吧再答:你等等再问:好的再答:解决方案1:因为三角形ABC为等边三角形所以AB=CA,角BAC=角ACF在三角形ABE和三角形CDO中

如图,三角形abc的面积是24,d,e,f,分别是bc,ac,ad的中点,求三角形def的面积

3再问:能否说出过程呢再答:ABD=ADC再问:嗯嗯再答:AFE:ADC=1:4再答:AFE=DFE再问:Afe:adc=1:4是什么意思再答:中位线知道嚒再问:不知道再答:底两倍高两倍再答:所以面积

如图三角形ABC中Ab=AC,D.E.F分别为AB.BC.CA上的点,且BD=CE,角DEF=角B你能说明三角形DEF是

AB=AC∴∠B=∠C∠DEF=∠B=∠C∠DEC=∠B+∠BDE=∠DEF+∠FEC∴∠BDE=∠CEF∠B=∠CBD=CE∴△BDE≌△CEF∴DE=EF∴△DEF是等腰三角形

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,三角形ABC的面积是24,D、E和F分别是BC、AC、和AD的中点.求:三角形DEF的面积.

∵∠DAC=∠DAC.AF=AD/2.AE=AC/2∴△ACD∽△AEF∴FE=DC/2.△FEA的高是△ADC、△ABC的高的二分之一∴△DEF的高是△ABC的高的二分之一∵D为BC中点∴CD=BC

如下图,DEF分别是BC.AD.BE的三等分点,三角形ABC的面积是27平方厘米,求三角形DEF的

三角形ABD的面积=27/3=9(cm2)三角形BED的面积=9/3*2=6(cm2)三角形DEF的面积=6/3*2=4(cm2)

如图,在三角形ABC中已知AB=AC=5,BC=6,切三角形ABC全等于三角形DEF,将三角形DEF与

抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,

已知如图在等边三角形abc中,过点a,b,c分别作ab,bc,ac的垂线,两两相交于点d,e,f.求证三角形def是等边

 再问:请问这样做可以不再问: 再答:差不多啊!可以啊!记得赏喔!谢!再问:嗯呐

三角形ABC中,已知:AB=2,BC=1,CA=√3,分别在边AB,BC,CA上取点DEF,使三角形DEF是等边三角形,

过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A

如图,长方形ABCD中,AB=60,BC=26,E、F分别是AB、BC边上的两点,BE+BF=42.那么,三角形DEF面

这题你要想到,S△DEF=SABCD-S△DFC-S△DAE-S△BEF①问题就能迎刃而解了AD=60=AB,DC=BC=26,BE+BF=42,所以设BE=x所以BF=42-x,所以CF=BC-BE

已知:如图,点A、B、C分别在三角形DEF上,且AC//DE,EF//AB,BC//DF

AB//DE,EF//BC,角BAC=角EDF,角BCA=角EFD,AC=DF,三角形ABC≌三角形DEF.

如图,三角形ABC的面积是24,D、E和F分别是BC、AC和AD的中点.求三角形DEF的面积.

3平方厘米因为D是BC的中点,所以△ADC的面积是三角形ABC的面积的一半=12因为E是AC的中点,所以△AED的面积是三角形ADC的面积的一半=6因为F是AD的中点,所以△FED的面积是三角形AEC

如图,已知三角形ABC和三角形DEF均为正三角形,D、E分别在AB和BC上,请找出一个与三角形DBE相似的三角形并证明

△BDE∽△AGD证明∵△ABC和△FDE都是等边三角形∴∠B=∠A=60°,∠FDE=60°∴∠BDE+∠BED=∠ADG+∠BDE=120°∴∠BED=∠ADG∴△BDE∽△AGD

如图,已知三角形abc是锐角三角形分别以ab,ac为边向外侧作等边三角形abm和等边三角形can.DEF分别是mb,BC

证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形

如图,三角形ABC为等边三角形,D、E、F分别在BC、CA、AB上,且三角形DEF也是等边三角形.(1)除已知相等的边外

(1)猜想:AD=BF=CEBD=AE=CF证明:∵ABC,三角形DEF为等边三角形∴角A=角EDF角A=角BDE=DF∵角A+角AED=角AED∴角AED=角DFB在三角形ADE和三角形BFD中{角