如图已知CD是○O的半径AE交○O于点B 且AB=OC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:11:58
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
1、辅助线:连接EB、DB2、在三角形AMF与ABE中,由于AF/AB=AM/AE所以AF*AE=AB*AM3、在三角形AMD与ADB中,由于AD/AB=AM/AD所以AD*AD=AB*AM4、所以A
证明:在△AEO和△BFO中,∵OA=OB,∴∠OAB=∠OBA.又∵C,D是弧AB三等分点,∴∠AOC=∠BOD.∴△AEO≌△BFO.∴AE=BF.连接AC、BD,则有AC=CD=BD,∵∠AOC
看一下http://www.vtigu.com/question_9_74_11282_1_63_0_50069269.htm视频讲解
连接EB,有三角形ABE为直角三角形,那么角BAE+角ABE=90度由于弧AE=弧EC,所以角ABE=角CAE,于是有2角CAE+角BAC=90度角ACF为直角三角形ACD的外角,因此,角ACF=90
因为AB平行于CD可得角EAD=角ADF,角AEF=角DFE,(两条直线平行,内错角相等)又AE=DF,根据角边角(两角和它们的夹边对应相等的两个三角形全等)得三角形AOE全等于三角形DOF.所以EO
再问:我的问题没有解决,不过感谢你的热心解答!再问:太给力了,你的回答完美解决了我的问题!
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
(1)证明:作OM垂直于CD于M,则CM=DM(垂径定理:垂直于弦的直径平分弦)因为AE垂直于CD于E,BF垂直于CD于F,所以AE//OM//BF,因为AB是圆O的直径,AO=BO,所以EM=FM(
CE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=10~一线三等角那三个直角三角形都是等腰直角~所以有了最上面的~
证明:连接BC因为AB是圆O的直径所以角ACB=角ACD+角BCD=90度因为CD垂直AB于D所以角BDC=90度因为角BDC+角BCD+角B=180度所以角BCD+角B=90度所以角ACD=角B因为
证明:补全圆O的下半部分,并延长CD与圆O的下半部分相交于G(应该能想象到图形吧~)∵CD⊥直径AB,∴AB为CG的垂直平分线∴AC=AG,并且弧AC等于弧AG∴弧AC对应的圆周角∠AEC=弧AG对应
连接BC因为EF·EB=EA的平方又因为EA=AC所以EF·EB=AC的平方因为在直角三角形ABC中AC的平方=AD·AB所以EF·EB=AD·AB再问:为什么“EF·EB=EA的平方”“AC的平方=
过点O作OG⊥CD于点G,连接OG,∵点O是圆心,∴CG=12CD.∵点O是AB的中点,AE⊥CD于E,BF⊥CD于F,∴OG是梯形AEFB的中位线,∵AE=3cm,BF=5cm,∴OG=3+52=4
证明:连接BC因为AC^2=AF*AE可得AC/AF=AE/AC可得三角形ACF相似于三角形AEC所以角AFC等于角ACDAC是圆上一条弦角AFC等于角ABC所以角ACD等于角ABC在三角形ABC和三
证明:延长CF交⊙O于G,连接AG、EG,∵CF⊥AB于点D,AB为⊙O直径,∴AC=AG,∠C=∠AGC.∵∠E=∠C,∴∠AGC=∠E.∵∠GAF=∠EAG,∴△GAF∽△EAG.∴AG:AE=A
证明:因为AB平行CD所以角A=角D因为AE=DF所以AE平行DF所以角AEF=角DFE因为{角A=角DAE=DF角AEO=角DFO所以三角形AEO=三角形DFO(ASA)所以EO=FO所以O是EF的
∵AB⊥OD,AB=8,∴AC=BC=4,设OB=r,则OC=r-CD=r-2,在△OBC中,OB2=OC2+BC2,即r2=(r-2)2+42,解得r=5,∴OC=5-2=3.∵BE是⊙O的直径,∵
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC
连接AF.据题意可得:EF×EB=AE²AD×AB=AC²∵AE=AC∴EF×EB=AD×AB再问:��˵һ��ΪʲôEF��EB=AE²��/再答:�ߨSAEF�רSB