如图已知AE是三角形ABC的中线,O是AE的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:54:01
太简单了因为AD=DC所以三角形ADB的面积等于CDB.(三角形的面积为底乘以高再除以2,底相同,高也相同所以面积相同).又因为AE=EF=FB所以三角形AED的面积等于三角形EFD和FBD.ABC的
DF与AE互相平分证明:设DF与AE的交点为O∵DF∥BE,BD∥EF∴四边形BDFE是平行四边形∴EF=BD∵D是AB中点∴AD=BD=EF∵AD∥EF∴△AOD≌△EOF∴OA=OE,OD=OF∴
稍等再答:证明:∵AE⊥CD,∠ACB=90∴∠AEC=∠ACB=90∵AC²=AB•CE∴AC/AB=CE/AC∴△ABC∽△CAE∴∠ACE=∠BAC∴AD=BD∵∠ACE+
楼主你好没有图,根据我的猜想画了图,如果E、F的位置确实如图所示,则连结CE和DE,CE交AD于G点∵AD为角平分线∴∠CAD=∠EAD又∵AC=AE,AG=AG∴根据三角形全等判定的SAS定理,得△
中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点
方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(
(1)证明:∵CD为AB的中线所以D为AB的中点又∵DF∥AC∴DF=1/2AE(三角形中位线)又∵AE=2EC∴DF=EC因为EC=1/3AC所以DF=3分之1AC(2)证明:∵DF=EC(上面已证
⑴可延长AD到F,使DF=AD,在△ABF中,由三边关系即可得出结论;⑵由△ADC≌△FDB,得∠CAD=∠F,在△ABF中,由边的大小关系即可得出角之间的关系;⑶同⑵,由角的关系亦可求解边的大小./
∵D是AB的中点,DE∥BC∴DE=1/2BC又∵DE=BF,BC=BF+FC∴BF=CF=1/2BC(即F是BC中点)∴CF=DE,DF=1/2AC∴四边形EDFC是平行四边形∴DF=EC∴EC=1
如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=AE.(2)猜想:BD与DE、CE之间的关系,
∠ADC=∠ADB=90°,∠CAD=90°-∠C=20°;∠AOB=∠OAF+∠OFA=(∠OAD+∠DAF)+(∠FBC+∠C)=(1/2)∠BAD+20°+(1/2)∠ABC+70°=90°+(
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
∵S△AEC=1/2AEx高=4S△ADC=1/2ADx高=1/2x3AEx高(两个三角形高以AD为底边,因此高相等)∴S△ADC=12∵S△ABD=1/2BDx高"S△ADC=1/2DCx高"=12
证明:因为BE平分角CBD,所以角DBE=角CBE,因为AE=AB,所以角ABE=角AEB,又因为角ABE=角ABD+角DBE,角AEB=角C+角CBE,所以角ABD=角C,因为角ABD=角C,角A=
证明:AB=AC,AE为中线,则:∠BAE=∠CAE=(1/2)∠BAC;又∠CAF=(1/2)∠CAD.故:∠CAE+∠CAF=(1/2)(∠BAC+∠CAD)=(1/2)*180度=90度.所以,
因为 AB = AC 所以为等腰三角形 =》∠B = ∠C所以 ∠ABE = ∠ACD&
两三角形等高,则面积与底边成正比.AD=3AE,所以S三角形ACD=3倍S三角形ACE=3×4=12BC=2DC,所以S三角形ABC=2倍S三角形ACD=2×12=24
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=