如图已知ab是圆o的直径弦cd垂直ab于点e,G是弧AC上任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:11:29
如图已知ab是圆o的直径弦cd垂直ab于点e,G是弧AC上任意一点
如图,已知AB是圆O直径,弦CD垂直AB于E,CD=16cm,AB=20cm,求OE的长

连接CO因为弦CD⊥直径AB所以CE=DE=1/2CD=8厘米在直角三角形COE中,根据勾股定理的:OE=√(CO²-CE²)=√(10²-8²)=6厘米希望采

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图7,AB是圆o的直径,CD是圆o的弦,AB,CD的延长线交于点E,已知AB等于2DE,角ocd等于四十度,求角AOC

60度再问:求过程!再答:好吧!稍等再答:因为CO=DO,所以

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

如图,已知AB为圆o的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.

∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,已知AB是圆O,直径,E是OB的中点,弦CD垂直AB于E,如果CE=3,那么直径AB长是()

E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.

如图,ab是圆o的直径,弦cd⊥ab于h,p是ab延长线上一点

∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,已知AB是圆O的直径,CD是弦,AE⊥CD于E,BF⊥于F.求证:EC=DF

证明:作OH垂直CD于H,则CH=DH.又AE垂直CD,BF垂直CD,故AE∥OH∥BF.所以,EH/HF=AO/OB=1.(平行线截线段成比例定理)故EH=HF,EH-CH=HF-DH,即EC=DF

如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求OE的长

因为AB=20cm,所以r=10cm,又弦CD⊥AB于E,CD=16cm,所以CE=CD/2=8设OE=x,则AE=10-x,BE=10+X,所以在直角三角形ABC中,CE^2=AE*BE,即:8^2

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

已知:如图,AB是圆O的直径,CD为弦,且AB⊥CD于E,F为CD延长线上一点,连接AF交圆O于M.求证∠AMD=∠FM

证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了

如图,已知AB是圆O的直径,CD是弦,AF⊥CD于,BF⊥CD于F

BF与园O焦点为G,则AEFG为矩形则有AE=FG(1)又,梯形ACDG是等腰梯形(可简单证明,略)则角ACE=角GDF(2)根据(1)、(2)可得,两个直角三角形AEC和GFD全等

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ADBC是正方形

图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.