如图已知ab平行cd,OA,OC分别平分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:18:23
如图已知ab平行cd,OA,OC分别平分
已知:如图ab平行于cd,ab等于dc,ad与bc交于o点,求证:oa=od,ob=oc

图呢?再答:因为AB平行且等于CD,所以四边形ABDC平行四边形,因为ad与bc交于o点,所以oa=od,ob=oc是不是这样,没图再问:再答:稍等再答:因为:AB平行CD所以:∠A=∠D,∠B等于∠

如图 已知ab平行cd

AF⊥DE∵AB//CD∠1=∠CHF∠2=∠BGE在△ECD中,∠E+∠2=∠FCD(三角形外交和定理)在△CHF中,∠F+∠CHF=∠ECD(三角形外交和定理),即∠F+∠1=∠ECD∠ECD+∠

如图,已知AB是圆O的直径 BC为圆的切线 切点为B,OC平行于弦AD,OA=2.求AD×CD的值

楼主的题目中点D是什么点?如果点D不固定,AD×CD也不固定!再问:CD��ԲO���е㰡����֤�ó����ɡ�����再答:����D�����е㣬���ǽ���֪���뾶����D��λ�ò�

如图,AB,CD相交于点O,且OA*OD=OB*OC,求证AC平行DB

证明:∵OA×OD=OB×OC∴OA/OC=OB/OD∵∠AOC=∠BOD∴△AOC∽△BOD∴∠A=∠B∴AC∥DB数学辅导团解答了你的提问,理解请及时采纳为最佳答案.

已知,如图,AC,BD交于O点,且OA=OC,OB=OD.求证:AB平行CD,AD平行BC.

1、∵OA=OC,OB=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD,∠ABO=∠CDO∴AB∥CD∴ABCD是平行四边形∴AD∥BC2、∵OA=OC,OB=OD∴ABCD是平行四边形∴A

已知:如图,AC和BD交于点O,AB//CD,OA=OB 求证OC=OD

∵AB//CD,所以∠OAB=∠OCD,∠OBA=∠ODC,∵OA=OB,∴∠OAB=∠OBA∴∠OCD=∠ODC,∴OC=OD别忘采纳我

如图,已知:AB平行CD,AC BD交与点O,OE平行AB交BC于点E

∵OE∥AB,∴OE/AB=CE/BC,∵OE∥DC,∴OE/DC=BE/BC两者相加:OE/AB+OE/DC=CE/BC+BE/BC因为CE+BE=BC,所以OE/AB+OE/DC=1,两边分别乘以

已知,如图,在梯形ABCD中,AB平行CD,对角线AC,BD交于点O,OA=OB,求证梯形ABCD是等腰梯形

在△AOB中因:OA=OB所以:△AOB是等腰△∠BAO=∠ABO因:AB平行CD所以:∠BDC=∠ABO∠DCA=∠BAO所以:△DOC是等腰△OD=OC又因:OA=OBAC=OA+OCBD=OB+

如图,半圆O的弦AB平行于直径CD,已知AB=24,求图中阴影部分的面积

分析:由于只知道了弦AB的长,所以就不可能直接求出阴影部分的面积,此时因为AB‖MN,两条平行线间的距离保持不变,所以可以通过平移小半圆,使小半圆的圆心与大半圆的圆心重合,然后作OC⊥AB,垂足为点C

如图,已知AB平行于CD

答:∠1与∠2互余.∵AB∥CD,EF⊥CD∴AB⊥EF∴∠APF=90°,即∠NPM=90°在△NPM中,∠1+∠2+∠NPM=180°∴∠1+∠2=90°,即∠1与∠2互余.

如图,​已知AB平行CD.

1)和是360度,连接bd,可得一对平行线的角,和一个三角形,180+180=3602)3)同理,连接bd,然后作三角形,每个三角形=180,算有几个就行了再问:还有别的方法吗

如图,已知AC,BD交于点O,AB平行CD,OA=OC,求证AB=CD

证明:∵AB//CD(已知)∴∠A=∠C,∠B=∠D(两直线平行,内错角相等)又∵OA=OC(已知)∴△ABO≌△CDO(AAS)∴AB=CD(全等三角形对应边相等)

如图,已知AB平行CD,

应该是求证的是:EG垂直于FG吧?再问:额再问:所以呢再答:要是求证的是EG垂直于FG的话,求证步骤如下。因为AB平行于CD;所以

如图,已知AD、BC交与点O,AB∥CD,OA=OD,求证:AB=CD

AB∥CD,角ABC=角DCB,角BAD=角ADC,OA=OD三角形AOB全等于三角形DOC,则AB=CD

已知:如图,AB平行CD,AD与BC相交于点O,且OA=OD.求证OB=OC

利用角边角定理再问:对哦再问:刚刚一直在想边角边

如图,已知AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,则CD=

连接BD,则∠ADB=90°;∵AD∥OC,∴OC⊥BD;根据垂径定理,得OC是BD的垂直平分线,即CD=BC;延长AD交BC的延长线于E;∵O是AB的中点,且AD∥OC;∴OC是△ABE的中位线;设

已知:如图,在⊙O中M,N分别为弦AB,CD的中点,AB=CD,AB不平行于CD.

证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM