如图在钝角三角形ABC中,CB=9,AC=10,AD垂直BC垂足为D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:58:33
如图在钝角三角形ABC中,CB=9,AC=10,AD垂直BC垂足为D
.如图在rt三角形abc中 c 90度 AC=2 CB=3..

1、BC垂直于EF,BC垂直于AC,所以EF//AC,因为AE//CF.SO,EACF是平行四边形.Y=X*2.2、AB=√13,如果四面行EACF能为菱形,则EB/AB=DB/BC,得BD=3-6/

如图在四边形ABCD中,AB=AD,角ABC=角ADC求证CB=CD

因为角ABC=角ADC,且AB=AD.所以CB=CD(大概吧)或

如图在直角三角形abc中 角c 90度,CB=CA=A,求AB的长

(根号2)A再问:过程再问:计算过程要作出AB边上的高

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图,在钝角三角形中,CB=9,AB=17,AC=10AB垂直BD于D,求AD的长

∵△ABC是以∠C为钝角的三角形,∴垂足D应在BC的延长线上.设AD=x,根据勾股定理得:BD=√(17²-x²),CD=√(10²-x²)而BD-CD=BC=

如图,在直角三角形ABC中,角C=90度,CB=CA=a,求AB的长.

我来回答!再问:回答啊再答:AB=√(a2+a2)=√2a再问:过程再答:采纳,亲再问:过程都没有再答:等一下再答: 再问:还有其他方法吗?我还没有学勾股定理再答:没有其它方法!无论谁做都这

如图2.在四边形ABCD中,AB=AD,CB=CD.求证:∠ABC=∠ADC.

证明:连接ACAB=AD,CB=CD,AC=CA三角形ABC全等于三角形ADC(SSS)所以∠ABC=∠ADC.

已知:如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:CB=CD

连接BD,因为AB=AD,所以ABD=角ADB,又因为∠ABC=∠ADC,所以∠ABC-∠ABD=∠ADC-∠ADB,即∠CBD=∠CDB,所以CB=CD同学,如果我的回答帮到你了,请万忙之中抽出一两

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图,在Rt△ABC中,∠ABC=90°,CA=3cm,CB=4cm.

(1)设:t秒钟移动了Tcm,cosA=3/5,cosB=4/5PC²=T²+3²-2*3*T*(3/5)=T²-18T/5+9PQ²=(5-T)&s

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

如图,在直角三角形ABC中,角C=90°,CB=CA=a,求AB的长.

在直角三角形ABC中根据勾股定义得:CB+CA=AB∵CB=CA=a∴AB=a+aAB=√2a

在钝角三角形ABC中,CB=9,AB=17,AC=10,AD垂直于BC交BC的延长线与点D.求AD的长

运用海伦公式求面积,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:  S=√[p(p-a)(p-b)(p-c)]  而公式里的p为半周长:  p=(a+b+c)/2带入求得S然后

如图1,在三角形ABC和三角形EDC中,C=CE=CB-CD

在三角形ACB和三角形CED中AC=CB∠ACB=∠ECDCE=CD∴三角形ACB和三角形CED全等SAS∴∠B=∠EEC=BC∴在三角形ECH和BFC中∠3=∠3∠B=∠EBC=EC∴三角形ECH和

如图,在钝角三角形ABC中,CB=9.AB=17,AC=10,AD⊥BC.垂足为D,求AD的长

请拍张清晰的图,这个都看不出图中有钝角三角形

如图,在△ABC中,CA,CB的垂直平分线交点在第三边上,那么这个三角形是(  )

连接CP.∵l是AC的垂直平分线.∴AP=PC∴∠A=∠ACP同理:∠B=∠PCB∵∠A+∠ACP+∠B+∠PCB=180°∴∠ACB=90°则△ABC是直角三角形.故选C.

如图,在钝角三角形ABC中,CB=9,AB=17,AC=10,AD⊥BC,垂足为D.求CD的长

设CD=x,在Rt⊿ABD中,17²-﹙x+9﹚²=AD²,在Rt⊿ACD中,10²+x²=AD²,因此17²-﹙x+9﹚

在钝角三角形ABC中,若sinA

根据正弦定理(大角对大边),角C为钝角,A,B是锐角.cosC0,cosB>0.可得答案选C!希望对你有用!

如图,在Rt三角形ABC中,AC=60cm,CB=80cm

设经过x秒,则CP=3x,CQ=4x,∴由勾股定理得:PQ=5x=40,∴x=8秒.而3×8<60,4×8<80.∴经过8秒两点相距40㎝