如图在边长为a的菱形ABCD中,角ABC=60度,PC垂直于面ABCD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:06:47
如图在边长为a的菱形ABCD中,角ABC=60度,PC垂直于面ABCD
如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于

设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4

如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形,

(1)找PC中点M,则NM//=ED,所以NMDE是平行四边形,所以EN//MD,所以EN//平面PDC (2)链接EB,由题可知,∠EBC=90°,即BC⊥EB,又因为三角形PAD为正三角

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°、边长为a的菱形,侧面PAD为正三角形,且垂直于底面ABCD

①.∵PG⊥AD.BG⊥AD.(正三角形,三合一).∴∠PGB为垂直二面角的平面角.∴∠PGB=90°.∵BG⊥AD.BG⊥PG.∴BG⊥平面PAD.(同时,PG⊥平面ABCD,平面PGB⊥平面ABC

如图,在边长为2a的菱形ABCD中,角DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF

连结BD,由题意可知△ABD与△BCD是全等的两个等边三角形.AE+CF=2a=CF+FD,则AE=FD,AB=BD,∠BAE=∠BDF=60°,则△ABE≌△BDF,那么BE=BF,∠ABE=∠DB

如图,在边长为2A的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点

(1)连接BD∵∠DAB=60°∴△ABD是等边三角形∴AB=DB又∵AE+CF=m∴AE=DF在△ABE和△DBF中AB=BD∠A=∠BDFAE=DF∴△ABE≌△DBF(SAS)∴BE=BF,∠A

如图,菱形ABCD中,顶点A到边BC,CD的距离AE,AF都为5,EF=6,那么菱形ABCD的边长为______.

连接AC、BD,AC交EF于点H,∵菱形ABCD,∴AC⊥BD,AD=AB=BC=CD,∵AE=AF,由勾股定理得:DF=BE,∴CF=CE,∴EF∥BD,∴AC⊥EF,∵AE=AF,∴EH=HF=3

如图,边长为2的菱形ABCD中

DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°、边长为a的菱形,侧面PAD为正三形,且垂直于底面ABCD

1,G为AD的中点PAD为正三角且垂直面ABCD可知道PG垂直ABCD即PG⊥GB底面ABCD是∠DAB=60°、边长为a的菱形所以BG⊥AD可知求证BG⊥平面PAD2证明AD⊥PGAD⊥GB那么AD

已知:(1)如图菱形ABCD中,∠A=60°,边长为a,求其面积S与边长A的函数表达式

(1)S=0.5a*0.5b/2*4=0.5ab=√3a²/2(2)BD=a,有AC=√3a所以S=0.5a*0.5b/2*4=0.5ab=√3a²/2

如图,菱形花坛ABCD的边长为6cm

选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对

如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.

(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面A

如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于

作PG⊥AD于G,连BG易证PG⊥平面ABCD,AG=AD/2∴PG⊥BG连BD,△ABD为等边三角形∴BG⊥AD∴BG⊥BC∴∠PBG就是所求二面角PG=√3·a/2=BG∴∠PBG=45°即二面角

如图,在菱形ABCD中,AE垂直BC于点E,EC=1,AE=5,求菱形ABCD的边长.

设AB为XAB=BC=X因为EC=1BE=X-1AE垂直BCAB的平方=AE的平方+BE的平方X的平方=25+(x-1)的平方X=13所以边长为13

如图,已知菱形abcd的边长为4,将菱形的一角沿ef折叠,点a落在m,点m在菱形外,则图中阴影部分

无论怎么折,阴影部分的周长还是菱形的周长=4*4=16再答:很高兴为您解答!有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!

如图,在四棱锥P-ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于

(1)证明:∵△ABD为等边三角形且G为AD的中点,∴BG⊥AD又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BG⊥平面PAD(2)证明:∵△PAD是等边三角形且G为AD的中点,∴AD

如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E

由AE+CF=a;AD=AE+ED=a;CD=DF+CF=a∴AE=DF;CF=ED在菱形ABCD中,连接BD则有AB=BD=BC∵AB=BD,AE=DF∠BAE=∠BDF=60°∴△ABE≡△DBF

如图,在边长为2的菱形ABCD中,角BAD=60,E为CD的中点,则向量AE*BD

AE*BD=(AD+DE)(BC+CD)=AD*BC+AD*CD+DE*BC+DE*CD=4+2+1-2=5,式中的都是向量.

如图,在边长为2的菱形ABCD中,角BAD=60,E为CD的中点,则向量AE·BD=?

AE*BD=(AD+DE)(BC+CD)=AD*BC+AD*CD+DE*BC+DE*CD=2*2+2*2*cos60°+1*2*cos60°+2*2*cos120°=4+2+1-2=5