如图在多面体pqabcd中,四面体abcd是正方形,cq平行pd,pa垂直pd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:00:11
(Ⅰ)证明:取AB的中点M,连接GM,MC,G为BF的中点,所以GM∥FA,又EC⊥面ABCD,FA⊥面ABCD,∴CE∥AF,∴CE∥GM,∵面CEGM∩面ABCD=CM,EG∥面ABCD,∴EG∥
V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD=1.5×2×3/3+﹙3/4﹚×3×2/3=7.5希望采纳哦!
法一:如下图所示,连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=13×3×3×2=6,又∵整个几何体大于四棱锥E-ABCD的体积,∴所求几何体的体积V求>VE-ABCD,法二:分别取AB、C
作ER⊥AD FS⊥BC则ER=FS=√3/2 RS∥AB∥EF ERSF是等腰梯形,作RG⊥EF SH⊥EF&
棱柱,棱锥,圆柱,圆锥属于多面体,球体只有一个面
(1)证明:设AC与BD交于G,则G为AC的中点.连接EG,GH,由于H为BC的中点,故GH∥.12AB,又EF∥.12AB,∴四边形EFGH为平行四边形,∴FH∥平面EDB;(2)证明:由四边形AB
连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=1/3×3×3×2=6,又∵整个几何体大于四棱锥E-ABCD的体积,∴所求几何体的体积V求>VE-ABCD,故选D.
证明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,又由FA⊥平面ABCD,得AF⊥CD,∵正方形ABCD中CD⊥AD,∴
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
说的是被剪掉的四面体剩余的多面体是7个面12条棱7个顶点
现在不方便画图,给你说一下思路吧:1、你可以把AB往两端各延长0.5、把CD也往两端各延长0.5,然后新端点分别跟E、F西点连接.这样,就可以得到一个三棱柱;三棱柱的体积可以用端面积乘以长来计算;2、
可证上下两个三棱锥等底等高V=9/2 需要详细过程请追问
证明:因为AE⊥面ABC,CF在平面ABC内所以AE⊥CF因为AC=AB=BC,F为AB的中点所以AB⊥CF所以CF垂直于平面ABDE连接FE,平面CEF垂直于平面ABDE,直线CE与平面ABDE所成
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
A√2/3高=1/√2,体积=(1/2)(1/√2)×1×1[中段三棱柱]++(1/2)(1/√2)×1×1×(1/3)[两端合成四面体]=√2/3
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
分割一下就好了7.5再问:你会做??你几年级的?再答:刚高考过你呢?再问:哦考的怎么样?我还是高一马上就高二了再答:还可以吧再问:呵呵我知道了行了难得有缘就采纳你的吧
(1)存在点M,且点M为AE的中点时,有OM∥平面CDE------(1分)证明:当点M为AE的中点时,由于O为正方形ABCD的中心--------(2分)∴OM为△AEC的中位线--------(3