如图在圆o中半径od垂直于弦ab垂足为c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:28:41
如图在圆o中半径od垂直于弦ab垂足为c
如图,在半径为4的圆O中,直接AB垂直弦CD于点E,连结OC,OD,若CD=四又根号二,求

求什么?在此题中半径=4(已知)OC=OD=4弦长CD=4根号2(已知)CE=DE=CD/2=2根号2现在只剩下OE为未知数了三角形OCE为直角三角形,根据勾股弦定理OE方=OC方-CE方=16-8=

如图ab是半圆的直径 ac为弦 od垂直ab交ac于点d 垂足为o 圆o的半径为4 od为3 求cd

ad=√(4^2+3^2)=5ab=4*2=8od=3oa=4△aod∽△acbac:oa=ab:adac=oa*ab/ad=4*8/5=6.4cd=ac-ad=6.4-5=1.4

如图,点A、B在⊙O上,半径OA垂直直线AC与点A,OD⊥OB,连接AB交OC于点D.AC=CD

设AC=XOC=1+XOA^2=(1+X)^2-X^2=1+2X且,tan∠OCA=OA/AC=(根号5)/2带入,解得X=2或X=-(2/5)所以X=2再问:2是怎么解的?再问:我怎么解不出来?再答

如图,在半径为4的圆O中,直径AB垂直弦CD于点E,连接OC,OD,若CD=4根号2,求角COD的度数和弧BD,弧AC的

∵CO²+OD²=CD²∴∠COD=90°∵CO=BO∴△COD是的腰三角形∵AB⊥CD∴∠BOD=∠COB=45°∴BD弧=AC弧=45°

如图在圆O中,半径OC垂直弦AB于点D,OD=2 AB=10 求圆的半径

∵OC⊥AB∴AD=BD=1/2AB=1/2×10=5∴根据勾股定理OA²=AD²+OD²=5²+2²=25+4=29∴OA=√29∴圆的半径√29

如图在圆o中已知半径oc垂直弦ab于d求证ac=bc

证明△cdb与△cda全等需要证明db=da接着需要证明△dob与△doa全等连接oa,ob即可证明再问:详细点再答:做辅助线oa,oboa=0bod是公共边证明两个Rt三角形全等可以证一条直角边和一

如图,A是圆O半径OB延长线上一点,半径OD垂直OA,AD交圆O于C,角A=40度,求DC弧的度数.

延长DO交H,应为角A=40,所以角D=50,所以弧CH=100,所以弧DC=80

如图,在圆O中,半径OA垂直于OB,C、D为弧AB的三等分点,AB分别交OC、OD于点E、F,下列结论:1、∠AOC=3

1.因为C、D为弧AB的三等分点,所以三段圆弧所对应的圆心角相等,都为30°,故∠AOC=30°正确2.AO=BO,∠AOC=∠BOD,∠OAE=∠OBF所以三角形AOE全等于BOF,所以OE=OF,

已知:如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交BC,AC于点D,E,连结EB,交OD于点F,OD垂直

(1)、设AB中点为O,连接OD、OE∵AB是⊙O直径,D、E在⊙O上∴OB=OE=OD=OA∴∠OEB=∠B=∠C,∠OAD=∠ODA∴∠BOE=∠BAC,∠BOD=∠OAD+∠ODA=2∠BAC∴

在圆O中,直径CE垂直于AB于D,OD=4cm,弦AC=根号10cm,求圆O的半径

设半径OA=OC=x则DC=OC-OD=x-4在直角△OAD中,AD^2=OA^2-OD^2在直角△CAD中,AD^2=AC^2-DC^2OA^2-OD^2=AC^2-DC^2x^2-4^2=(√10

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,在半径为4的圆O中,直接AB垂直弦CD于点E,连结OC,OD,若CD=四又根号二,求∠cod

AB是直径AB垂直于CD∴CE=DE=2√2∴CE/OC=sin∠AOE=2√2/4=√2/2∴∠COE=45°∴∠COD=2∠COE=90°

如图,在圆o中,半径OA垂直于弦BC,垂足为D,OD=4,AD=1.求BC和AB的长

(1)∵BC⊥OA,∴BE=CE,AB=AC,又∵∠ADB=30°,∴∠AOC=60°;(2)∵BC=6,∴CE=12BC=3,在Rt△OCE中,OC=CEsin60°=23,∴OE=OC2-CE2=

如图,在圆O中,半径oa垂直于弦bc,垂足为d,od=4,ad=1,求bc和ab

连接ob则oa=ob=od+ad=5在三角形dob中因为do垂直bc则bo的平方等于do平方加上bo的平方即5的平方=4的平方加上bd的平方则勾股定理bd=3bc=6ab=根号下3的平方加上1的平方=

如图已知圆o中,半径OD垂直于弦AB,垂足为C,

分析:此题用到了垂径定理和圆周角与圆心角的关系,同时还有勾股定理

如图,在半径为r的圆o中,角aob等于2a,oc垂直ab于点c,求弦ab的长,及弦心距

角aob+角a+角b=180°因为角aob等于2a角a=角b所以可以得出2a+a+a=180°角a=45°角aob=90°ab=r√2弦心距oc=r/√2

如图1,在圆O中,弦AB垂直AC,且AB=AC=10cm,OD垂直AB于D,OE垂直AC于E,则圆O的半径为多少cm?

因为AB、AC两弦垂直,且A在圆周上所以∠BAC=90,所以∠BAC对应的圆弧为180所以BC连线过原点,即为圆的直径所以r=d/2=(√(AB^2+AC^2))/2=(√(100+100))/2=(

如图,PA切圆O于A点,PB交圆O于B,C点,半径OD垂直BC于E点,AD交PB于点F.求证:PA=PF

因为:圆半径相等所以:角ODA=角OAD因为:OD垂直BC所以:角ODA+角BFD=90因为:PA为圆切线所以:角OAD+角DAP=90所以:角BFD=角DAP所以:角AFP=角DAP所以:PA=PF

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=O

证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO