如图在圆o中c是弧AB=弧BC,弧AB:弧AMC=3:4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:16:39
如图在圆o中c是弧AB=弧BC,弧AB:弧AMC=3:4
如图,在圆中,AB是弦,C为弧AB的中点.若BC=2根号3,O到AB的距离为1.求圆O的半径.

连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B

如图,在圆O中,AB是弦,C为弧AB的中点,若BC=2倍的根号3,O到AB的距离为1.求圆O的半径

连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²

如图,△ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上的一点,延长DA至点E,是CE=C

∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC

如图,在圆O中,直径AB=4,点E是OA中任一点,过E作弦CD垂直AB,点F是弧BC一点,链接AF交CE与点H,

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图已知在圆O中,弦AD.BC的延长线交于点P,且BC=CP,C是BD弧的中点.求证,AB是圆O的直径

连接线段OC,线段BD,OC与BD相交于点Q,因为C是弧BD的中点,且O是圆心,所以,OC垂直BD,且平分BD,线段BD中点是Q,又,BC=CP,故QC是三角形BDP的中位线,所以QC平行DP,又QC

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D

(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.

(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO

如图,在圆O中,AB=CD.求证:BC=AD.

解题思路:本题主要考察了圆中,弧与弦的关系计算问题,等弦所对的弧相等,等弧所对的弦也相等。解题过程:证明:∵AB=CD∴弧AB=弧CD∴弧AB-弧BD=弧CD-弧BD∴弧AD=弧BC∴AD=BC

如图,在Rt三角形ABC中,叫C=90度,AC=2,AB=6,圆O是三角形ABC的外接圆,D是弧BC的中点,则BD等于多

连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco

如图,在圆O中,AB是直径,C为圆周上一点,AC:BC=3:4,AB=10cm.角ACB的平分线交圆O于点D,连接AD,

/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,已知AB是圆O的直径,点C、D在圆O上,且AB=6,BC=3.

(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,

如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E

1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*

如图三角形ABC是圆O的内接三角形,ac=bc,c为圆o中弧ab上一点,延长da至点e,使ce=cd,求证ae=bd.

(1)因为CA=CB,所以弧CA=弧CB,所以∠CDE=∠CAB(同弧所对圆周角相等)又因为CE=CD,CA=CB,所以两等腰三角形底角都相等,可以得到∠ACB=∠ECD,所以∠ECA=∠DCB,又因

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

已知如图,在圆O中,AB是圆O的直径,AC,BC分别交圆O于E,D,D是弧BE的中点,角A=40度,求角C大小

连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学

如图 ,在三角形ABC中AC等于AB,点O是BC的中点,AC切圆O于D,求证:AB是圆O的切线

连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB

如图,在⊙O中,弦AB等于半径,延长OA到C,使AC=OA.(1)求证:BC是⊙O的切线;

1、证明:因为AB=OB=OAAC=OA所以BA=1/2OC所以∠CBO=90°又因为OA=OB=AB所以三角形ABO是等边三角形所以∠ABO=60°所以∠CBA=90°-60°=30°=1/2∠BO

如图,AB时圆O的直径,AD是圆O的切线,点C在圆O上,BC平行OD,AB=2,OD=3求BC的长

是不是上图的样子? 证明过程如下“连结A.C   因AD是切线 ∠DAO=90°  ∠ACB是直径所对的圆周角也是90° 

在圆o中,c是弧ab的中点,连接ab,ac,bc,则 a. ab>2ac b. ab=2ac c. ab

选C画出图后A,B,C三点连成的是三角形,弧AC=弧BC,AC=BC,三角形两边之和大于第三边∴a