如图在圆o中c是弧AB=弧BC,弧AB:弧AMC=3:4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:16:39
连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC
(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC
连接线段OC,线段BD,OC与BD相交于点Q,因为C是弧BD的中点,且O是圆心,所以,OC垂直BD,且平分BD,线段BD中点是Q,又,BC=CP,故QC是三角形BDP的中位线,所以QC平行DP,又QC
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
(1)连接OE,OD,在△ABC中,∠C=90°,AC+BC=8,∵AC=2,∴BC=6;∵以O为圆心的⊙O分别与AC,BC相切于点D,E,∴四边形OECD是正方形,tan∠B=tan∠AOD=ADO
解题思路:本题主要考察了圆中,弧与弦的关系计算问题,等弦所对的弧相等,等弧所对的弦也相等。解题过程:证明:∵AB=CD∴弧AB=弧CD∴弧AB-弧BD=弧CD-弧BD∴弧AD=弧BC∴AD=BC
连接od交bc于点E,应为D是弧BC的中点所以od垂直bc,所以角deb等于90,应为ab是直径所以角acb为90,所以bc为4根号2,od垂直bc所以be等于2根号2,三角形obe相似三角形abco
/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X
因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
1)连CO,DO,EO,设圆O的半径为r,因为AC+BC=8,AC=2所以BC=6△ACO面积=(1/2)*AC*OD=r,△BCO面积=(1/2)*BC*OE=3r,△ABC面积=(1/2)*AC*
(1)因为CA=CB,所以弧CA=弧CB,所以∠CDE=∠CAB(同弧所对圆周角相等)又因为CE=CD,CA=CB,所以两等腰三角形底角都相等,可以得到∠ACB=∠ECD,所以∠ECA=∠DCB,又因
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
连接AD∵D是弧BE的中点∴弧BD=弧DE∴∠BAD=∠CAD(等弧对等角)∵直径AB∴∠ADB=90∴AC=AB(三线合一)∴∠C=∠ABC=(180-∠BAC)/2=(180-40)/2=70数学
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
1、证明:因为AB=OB=OAAC=OA所以BA=1/2OC所以∠CBO=90°又因为OA=OB=AB所以三角形ABO是等边三角形所以∠ABO=60°所以∠CBA=90°-60°=30°=1/2∠BO
是不是上图的样子? 证明过程如下“连结A.C 因AD是切线 ∠DAO=90° ∠ACB是直径所对的圆周角也是90° 
选C画出图后A,B,C三点连成的是三角形,弧AC=弧BC,AC=BC,三角形两边之和大于第三边∴a