如图在圆o中ab是直径角acb的角平分线交圆交圆o于D则角ABD=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:10:13
如图在圆o中ab是直径角acb的角平分线交圆交圆o于D则角ABD=?
一道与圆有关的数学题如图,AB是⊙O直径,∠ACB的角平分线CD交⊙O于D,求∠ABD

因为AB为直径所以∠ACB=90又因为CD平分∠ACB所以∠ACD=45所以∠ABD=45(同弧对等角

如图,圆O中,AB为直径,点C在圆O上,角3=20度,那么角2,角1,角4,角ACB为多少(只要答案)

先作辅助线CB求采纳哦角2是20度角1是40度角4是70度角ACB是90度

如图,圆O中,AB为直径,CD平分角ACB,交圆O于D,求证:CA+CB/CD=根2

证明:延长CB到E,使BE=AC,连接DE∵AB是⊙O的直径∴∠ACB=90°∵CD平分∠ACB∴∠ACD=∠BCD=45°∴AD=BD(等角对等弦)又∵∠DBE=∠DAC(圆内接四边形外角等于内对角

如图在圆o中 AB是直径.P为AB上一点,角NPB=45.

1因直径AB=AP+BP=2+6=8,所以半径OA=8/2=4,OP=OA-AP=4-2=2.又角MPB=45度,故作OH垂直MN,垂足为H,三角形OHP是等腰直角三角形.OH=HP,而OH^2+PH

如图,在直角三角形ABC中,角ACB=90度,D是AB边上的一点,以BD为直径的圆O与边AC相切于点E,连接DE并延长,

1.连接BE,∵AC是切线,所以∠CEF=∠AED=∠ABE,∴∠F=∠BDE,所以BD=BF2.连接OE,设半径为R,△AOE∽△ABC,得OE/BC=AO/AB即R/6=R+4/2R+4,得R=4

如图,已知AB是圆O的直径,AB=10,点C,D在圆O上,DC平分∠ACB,∠EAC=∠D.

这里同初三滴~刚考完期末1.证明:设DC与AB的交点为F连接BD,由题可知:∠BDA=∠BCA=90°∵∠BCD=∠ACD=45°∴BD=AD,∠DBA=∠DAB=45°由∠DBA=∠ACD=45°∠

如图,在圆O中直径AB=10,弦AC=6,∠ACB平分线交圆O于D

(1)因为AB是直径且D在圆上,直径对应圆周角为90度,又CD是∠ACB平分线,则∠ACD=∠BCD=45度,∠BAD=∠ACD=45度,∠ABD=∠BCD=45度所以△ADB是等腰直角三角形,AB是

如图,在圆O中,AB是直径,C为圆周上一点,AC:BC=3:4,AB=10cm.角ACB的平分线交圆O于点D,连接AD,

/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X

如图,在RT三角形ABC中,角ACB=90度,D是AB边上一点,以BD为直径的圆O与边AC相切于点E,连接DE并延长,与

弦切角=圆周角∠AED=∠ABE∠FEC和∠FBE都是∠F的余角∠FEC=∠FBE∠FEC∠AED是对顶角∠FEC=∠AED所以∠ABE=∠FBE∠F,∠BDE分别是∠ABE∠FBE的余角所以∠F=∠

如图,在RT三角形ABC中,角ACB=90度,D是AB边上一点,以BD为直径的圆O与边AC相切于点

设以BD为直径的圆的圆心为O,因为圆与AC相切于E,所以OE垂直AC于E,所以OE平行与BF,角DFB=角DEO,因为OD=OE,所以角DEO=角ODE,所以角DFB=角BDF,所以BD=BF.因为B

如图,.如图,在Rt△ABC中,金爱鸥ACB=90杜,D是AB边上一点,以BD为直径的圆O与边AB相切于点E,连接DE并

(1)证明:连OE,则OE⊥AC.又BC⊥AC.∴OE∥BC∴∠OED=∠F.又OD=OE,∠OED=∠ODE,∴∠ODE=∠F,∴BD=BF(2)设⊙O的半径为R,则BD=2R,OD=OE=R,由O

数学作业:如图 在rt三角形abc中 角acb等于90度,D是AB边上的一点,以BD为直径作圆O交AC于点E,

(1)连BE,OE,BD是直径,∴BE⊥DE,BD=BF,∴DE=EF,DO=OB,∴OE∥BF,AC⊥BF,∴OE⊥AC,∴AC为圆O切线。(2)BC=6,AB=12,∴∠B=60°=∠BDF,∠A

如图,在三角形ABC中,角ACB等于九十度,D是AB的中点,以DC为直径的圆O 交三角形ABC的边于G

(1)连接OF∵CD是直径∴CD过O点∴CO=OF=1/2CD在RT△ABC中∵D是AB中点∴CD=AC=DB=1/2AB∴CO:CD=OF:DB=1/2又∵∠OFD=∠ODF=∠DBC∴OF//AB

如图,在三角形abc中,角acb等于九十度,d是ab的中点,以dc为直径的圆o交三角形abc的边于G、F、

证明:连接DF,可以判定角AFC=90°(直径CD所对应的圆周角为90度),所以角AFC=角C=90°.所以DF平行AC,又因为D为AB的中点,可以判定DF为三角形ABC的中位线,所以F为BC的中点.

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图,在直角三角形ABC中,角ACB=90度,D是AB边上的一点,以BD为直径的圆O与边AC相切与点E,连接DE并延长,

连接OE圆O与边AC相切与点EOE⊥ACAO/AB=OE/BC(8+r)/(8+2r)=r/1296+12r=8r+2r²r²-2r-48=0(r+6)(r-8)=0r=8OD/B

如图 三角形ABC中角ACB=90度 以BC为直径的圆O交AB于D、E是AC的中点求证DE是圆O的切线

证明:连接OD、OE、CD∵BC是直径∴∠BDC=∠ADC=90°∵E是AC中点∴ED=EC(直角三角形斜边中线,等于斜边一半)∵OC=OD,OE=OE(SSS)∴△ODE≌△OCE∴∠ODE=∠OC

不要用三角函数如图,在三角形ABC中,角ACB=90°,D是AB的中点,以DC为直径的圆O交三角形ABC的边GFE三点.

(1)连接DF因为DC是圆的直径,F在圆上所以角DFC=90度所以DF垂直BD所以三角形BDF相似于三角形BAC所以BF:BC=BD:BA因为D是AB中点所以F是BC中点(2)连接DE,GF按(1)的

问一个圆的问题如图,在RT△ABC中,∠ACB=90°,D是AB边上,以BD为直径的⊙O与边AB相切于点E,连结DE并延

连接OE1.∵AE相切与⊙O∴∠AEO=90°∵∠ACB=90°∴OE‖BC∵OD=OE=r(半径)∴∠ODE=∠OED=∠F∴BD=BF2.设OD=r(半径)∵OE‖BC(以证)∴△OAE∽△ABC