如图在圆o中ab=bc=cd,角adc=40度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:10:27
如图在圆o中ab=bc=cd,角adc=40度
已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么

证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB

如图,已知在圆O中,弦AB⊥CD,连接AD、BC,OE⊥BC于点E.求证:OE=1/2AD

延长CO,交圆O于F,连接BF、DF因为CF是直径所以∠CBF=90所以∠ABC+∠ABF=90因为AB垂直CD所以∠DCB+∠ABC=90所以∠ABF=∠DCB所以BD弧=AF弧所以AD弧=BF弧所

如图,在圆O中,AB是直径,BC=CD=DE,∠BOC=50°,求∠AOE的度数.

因为BC=CD=DE,所以角BOC=角COD=角DOE=50度所以角BOE=150度又因为角BOA=180度所以角AOE=30度

已知,如图,在圆O中,弦AD=BC,连接AB,CD,求证AB=CD

∵弦AD=弦BC∴∠AOD=∠BOC∴∠AOD+∠AOC=∠BOC+∠AOC即∠COD=∠AOB∴弦AB=弦CD(定理:在同圆或等圆中,若两个圆心角、两条弧、两条弦中有一组量相等,则对应的其余各组量也

如图,在圆O中,AB=CD.求证:BC=AD.

解题思路:本题主要考察了圆中,弧与弦的关系计算问题,等弦所对的弧相等,等弧所对的弦也相等。解题过程:证明:∵AB=CD∴弧AB=弧CD∴弧AB-弧BD=弧CD-弧BD∴弧AD=弧BC∴AD=BC

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

证明:∵AD=BC,∴AD=BC.∴AD+BD=BC+BD.∴AB=CD.∴AB=CD.

如图,在矩形ABCD中,AB=3,BC=4,P是边AD上一点,过三点A,B,P作圆O 求当CD与圆O相切时,BC被圆O截

设AP=X时,圆O与CD切于FOP=OF=4-AP/2=4-0.5*X;OP=BP/2=0.5√(X²+3²);4-0.5*X=0.5√(X²+3²);X=55

已知如图在圆O中AD=BC,求证AB=CD

证明:连接BD∵AD=BC∴∠ABD=∠CDB【等弦所对的圆周角相等】∵∠A=∠C【同弧所对的圆周角相等】∴⊿ADB≌⊿CBD(AAS)∴AB=CD

已知:如图,⊙O中弦AB=CD.求证:AD=BC.

证明:∵AB=CD,∴AB=CD,∴AB-BD=CD-BD,∴AD=BC.

如图,在圆O中,弦AB.CD相交于AB的中点E,连结AD并延长至F,使DF=AD,连结BC.BF.

1)D,E分别为AB,AF中点所以:DE平行BF所以∠AED=∠AEF,∠ADE=∠AFE因为∠AED=∠CEB,∠ADE=∠EBC(圆周角)所以:∠CBE=∠AEF,∠EBC=∠AFE所以:△CBE

如图,在圆O中,弦AB、BC相交于点E,OE平分角AEC,求证:AB=CD

1、连接AO、CO△AOE与△COE关于OE对称在圆中△AOE≌△COE,所以AE=CE又因为∠AEB=∠DEC弧BD所对的两个圆周角∠BAD=∠BCD所以△ABE≌△CDE所以AB=CD2、连接AB

已知如图,在圆o中,弦AB‖CD,求证:AD=BC

因AB//CD推出角AOC=角BOD推出弧AC=弧BD(相等的圆心角对应的弧长相等)连接ACBD则AC=BD在证明三角形ACD全等于三角形BDC就行了刚才的写错了

如图,在圆O中,AB垂直于CD,OE垂直于BC于点E.求证:OE=1/2AD

证明:连接CO并延长交圆O于M.CM为直径,则角CBM=90度,得:角BCM+角M=90度;连接AC,则角CAB=角M,即:角BCM+角CAB=90度;又AB垂直CD,则:角ACD+角CAB=90度.

如图,在圆o中,ab=cd,ab与cd交于p,ap与dp关系

过O作OE⊥AB于E,OF⊥CD于F,则E,F为AB,CD中点,连OP.AB=CD,所以OE=OF.再由勾股定理(OP=OP,OE=OF)得PE=PF.AP=AE+PE=DF+PF=PD.

如图,在圆O中,弦AB,BC相交于点E,OE平分角AEC,求证:AB=CD

证明∵OE平分角AEC,OE交圆周于F∴CF弧=FA弧∵∠CEB=∠AED对顶角∴CB弧=DA弧∴CF弧+FA弧+CB弧=DA弧+CF弧+FA弧AB弧=CD弧AB=CD弧相等则弦也相等

如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.

证明:(1)∵弧AD=弧CB,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM,∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,AM=CM,OA=OC,∴MO⊥AC.∴∠AO