如图在四边形abc中,M,N分别是AD,BC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:25:15
MD=BD因为△ADC和△ABC都是直角三角形且M为AC中点那么DM和BM是两个三角形的中线,所以DM=BM=1/2AC(直角三角形切边上的中线等于斜边的一半)
在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD原题是这样的吧!童鞋,请不要重复发帖子啊!浪费时间!证明:连结BM,DM在Rt△ABC中,点M是斜边AC的
因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形
证明:连接MB,MC∵∠ABC=90°,M是AC中点∴BM=1/2AC(直角三角形斜边中线等于斜边一半)同理MD=1/2AC∴MB=MD∵N是BD中点∴MN⊥BD(等腰三角形三线合一)
在三角形ABC中,∠ABC=90度,M是AC中点,那么有MB=AC/2. 同理可得,MD=AC/2,因此有MD=MB.
由题意得四边abcd为矩形ac与bd为对角线,所以m与n重合,为ac,db的交点,也是中点.所以mn重合,是bd的中点
证明:∵∠ABC=∠ADC=90°,M分别是AC的中点∴BM=AC/2,DM=AC/2(直角三角形中线特性)∴BM=DM∵N是BD的中点∴MN⊥BD(等腰三角形三线合一:中线、高、角平分线)
证明:连接BM,DM∵∠ABC=∠ADC=90°M,N分别是AC,BD的中点∴BM=1/2AC,DM=1/2AC(直角三角形斜边中线等于斜边一半)∴MB=MD∵N是BD中点∴MN⊥BD(等腰三角形三线
证明;∵∠ABC=∠ADC=90°,M是AC的中点∴DM=AC/2,BM=AC/2∴MD=MB∵N是BD中点∴MN是等腰三角形BMD的中线,高线,角平分线∴MN垂直平分BD所以(1)MD与MB的大小关
(1)证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=12AC,DM=12AC,∴BM=DM;(2)∵BM=DM,N是BD的中点,∴MN⊥BD(等腰三角形三线合一).
证明:连接A,C连接B,D交AC于O点,令AC与MO的交点为S∵AD=AB,DC=BC,AC=AC∴∠AOD=∠AOB=90°∵M,N.P,Q分别是AB,BC,CD,DA的中点∴MQ‖BD,QP‖AC
50cm^2应为MN为AB的中位线所以MN=1/2BC应为△AMN的高等于梯型MBCN的高(这个知道吧?不知道的话作下高)所以S△AMN=1/4S三角形ABC应为△AMN的高等于△MPN的高又因为△A
(1)猜想MN⊥BD.证明:∵∠ABC=∠ADC=90°M,N分别是AC,BD的中点∴BM=1/2AC,DM=1/2AC(直角三角形斜边中线等于斜边一半)∴MB=MD∵N是BD中点∴MN⊥BD(等腰三
证明:∠ABC=∠ADC=90°,M是AC的中点∴DM=AC/2BM=AC/2(斜边上中线等于斜边的一半)DM=BM又N是BD的中点∴MN⊥BD(三合一)
Rt△ADC中∵AM=MC∴MD=AC/2∴MB=AC/2∴MD=MB又BN=ND∴MN⊥BD
因为四边形ABCD为平行四边形所以AD=BC,AD平行于BC又因为AE=CF所以ED=BF因为M\N为ED、FB的中点所以EM=FN且EM平行于FN所以四边形ENFM为四边形
◇根据三角行中位线原理:PM平行与BD,等于BD的二分之一;NQ也平行于BD,等于BD的二分之一.所以PM平行且相等于NQ,同理PN平行且相等于MQ.所以是平行四边形.又因为AC=BD,所以这个平行四
证明:连接AC取AC中点P,∵M,N分别是AD,BC的中点∴NP‖AB,PM‖CD,NP=AB/2,PM=CD/2∠PMN=∠NFC,∠PNM=∠BEN∵AB=CD∴NP=PM∴∠PNM=PMN∴∠B
如图,∵M、N是AB、CB中点,∴MN∥AC且MN=AC/2(三角形中位线定理),同理,PQ∥AC,且PQ=AC/2,∴MN∥PQ,且MN=PQ∴四边形MNPQ是平行四边形(一组对边平行且相等的四边形
证明:连接BM、DM∵∠ABC=90,M是AC的中点∴BM=AC/2(直角三角形中线特性)∵∠ADC=90,M是AC的中点∴DM=AC/2∴BM=DM∵N是BD的中点∴MN⊥BD(三线合一)