如图在四边形abcd中点e f g h分别是四条边的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:55:09
∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH‖BD,EH=1/2BD同理FG‖BD,FG=1/2BD∴EH‖FG,EH=FG∴平行四边形EHGF∴任意四边形的中点四边形的形状都是
应该是AD=BC吧,要不然你这道题没法做啊.∵E为BD中点,F为AB中点∴EF为△ABD的中位线(三角形中位线定义)∴EF=1/2AD(三角形中位线等于第三边的一半)∵E为BD中点,G为CD中点∴EG
四边形EFGH是平行四边形证明:因为AB、BC、CD、AD的中点分别是E、F、G、H,所以EF、GH分别是是三角形ABC和ADC的中位线根据中位线性质得:EF//AC,EF=AC/2,GH//AC,G
证明:连接AC、BD因为EFGH是中点所以:EH=FG=1/2*BDHG=EF=1/2*AC(三角形中位线)对边分别相等,这个图形是平行四边形再问:我们还没学到中位线,可以用其他方法吗?再答:中三绝不
在ΔABC中,E,F分别是ABBC中点∴EF是三角形中位线∴AC//EF又EF在平面EFG内AC不在面EFG内∴AC//平面EFG同理可证,BD平行平面EFG
证明:EFG分别是BDABDC的中点,由中位线定理知:FG=0.5ADEG=0.5AB因为AD=AB所以EG=FG所以EFG是等腰三角形所以得证!
证明:∵E是BD的中点,F是AB的中点∴EF是△ABD的中位线∴EF=½AD∵E是BD的中点,G是CD的中点∴EG是△BCD的中位线∴EG=½BC∵AD=BC∴EF=EG∴△EFG
在△ABC中,∵F、G分别是AC、BC中点,∴FG是中线,∴FG=½AB,同理:EG=½CD,而AB=CD,∴FG=EG,∴△EFG是等腰△.
在三角形BCD中,F、G,分别是BC、CD的中点,所以BD//FG,且BD不在平面EFG上,所以BD//平面EFG;同理可证AC//EF,得AC//平面EFG线面平行的判定定理:平面外的一条直线与平面
1,容易证明BD//FG且BD不在平面EFG上,所以BD//平面EFG2,AC//EF,同理平面外一条直线与平面上一条直线平行,则平面外直线平行于这个平面
在三角形BCD中,F、G,分别是BC、CD的中点,所以BD//FG,所以BD//平面EFG;同理可证AC//EF,得AC//平面EFG
这道题目吧.我琢磨了半天你那EF是哪里来的.是MN与AC,BD的交点吧取AD中点O,联结MO,ON应为.M、N为AB、AC的中点,O为AD中点所以OM=1/2BD,ON=1/2AC,MO//BD,ON
因为E,F,G,H分别为棱AB,BC,CD,DA的中点所以EF//ACGH//ACAC=2EF可得GH//EF同理可得EH//FGBD=2EH所以四边形EFGH是平行四边形又AC=2EFBD=2EH且
结论:AB=AF+CF.证明:分别延长AE、DF交于点G.∵E为BC的中点,∴BE=CE,∵AB‖CD,∴∠BAE=∠G,在△ABE与△GCE中,∴△ABE≌△GCE,∴AB=GC,又∵∠BAE=∠E
空间四边形可以想象成三棱锥,学习立体几何你需要学会转化.其中ABCD为空间四边形,其实就构成了一个四棱锥,做辅助线P点为AC的中点,则向量EP就等于二分之一BC,而向量PF就等于二分之一向量AD.而向
证明:EFG分别是BDABDC的中点,由中位线定理知:FG=0.5ADEG=0.5AB因为AD=AB所以EG=FG所以EFG是等腰三角形
证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=12AD,GE=12BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.
取AB中点P,MP、NP,则NP是三角形ABC中位线,NP‖AC,且NP=AC/2,同理,MP,MP‖BD,且MP=BD/2,AC=BD,∴MP=NP,三角形MNP是等腰三角形,〈PNM=〈NMP,〈
证明:取AD的中点O,连接OM,ON∵O是AB的中点,M是AD的中点∴OM‖BD,OM=1/2BD∵N是CD的中点,∴ON=1/2AC,ON‖AC∵BD=AC∴OM=ON∴∠OMN=∠ONM∵OM‖B
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD