如图在四边形abcd中ef分别是dc,ab上的点,且de=bf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:54:26
ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.
∵E是AD的中点,G是BD的中点∴2EG=AB∵G是BD的中点,F是BC的中点∴2GF=CD∵AB=CD∴GE=GF∴△GEF是等腰三角形∵H是EF的中点∴根据等腰三角形三线合一得到GH⊥EF
证明:因为:F为CD中点,G为AC中点,所以:FG//AD且FG=1/2AD.因为:E为AB中点,G为AC中点,所以:EG//BC且EG=1/2BC.因为:AD=BC所以:FG=EG在三角形EFG中,
123456789好难连EG,GF,因为E,G为DA,DB中点,所以EG平行且等于1/2AB同理F,G为BD,BC中点,所以GF平行且等于1/2DC因为AB=DC,所以EG=GF又因为H为等腰三角形G
向量EF=EA+AB+BF,向量EF=ED+DC+CF,因为E,F分别是ADBC的中点,所以向量EA+ED=0,向量BF+CF=0(向量大小相等,方向相反,和为0向量,你懂的)所以向量AB+向量DC=
证明:连接AE,CE∵∠BAD=∠BCD=90° 点E是BD的中点∴AE=1/2BD,CE=1/2BD(直角三角形斜边中线等于斜边的一半)∴AE=CE∵点F是AC的中点∴EF⊥A
因为E,F,G分别是AC,BD,BC的中点所以EG=1/2ABFG=1/2DC又因为在三角形EFG中两边之差小于第三边所以EG-FG
取BC中点M,连接EM、FM在三角形ABC中,EM为中位线,所以EM=1/2*AC同理可得FM=1/2*BD所以EM+FM=1/2*(AC+BD)在三角形EFM中,根三角形三边关系定理可得EF
一楼的答案是不对的.应该是这样:取AD的中点,设为G,联结EG,FG那么才有一楼所说的EG=1/2AB,FG=1/2CD三角形EFG中,根据两边之差小于第三边,得FG-EGFG-EG=1/2AB-1/
四边形DEBF为菱形AD⊥BDAD‖BC所以BD⊥BC则△CBD,△ABD为直角三角形直角三角形斜边中线等于斜边一半所以DE=1/2AB=BEDF=1/2CD=BF而CD=AB所以DE=BE=BF=D
EF垂直平分AC则AF=FCAE=EC又三角形AOF与三角形EOC为直角三角形,AO=OC,角FAO=角ECO三角形AOF≌三角形EOCAF=EC又AF∥EC所以四边形AECF是菱形再问:AF=且∥E
(1)取AC中点P,连接PF,PE,可知PE=AB2,PE∥AB,∴∠PEF=∠ANF,同理PF=CD
△OMN的形状是等腰三角形.证明:如图,分别取AC、BD的中点为G、H,依次连结E、G、F、H得四边形EGFH.∵FG是△ADC的中位线,∴FG∥CD,且FG=CD/2同理EH∥CD,且EH=CD/2
证明:连接FG因为E、G、F分别是AB、CD、AC的中点,则2EG=BC,2FG=AD因为AD=BC所以EG=FG则三角形EFG是等腰三角形因为H是EF的中点所以GH是三角形底边的中线故GH垂直EF
过A、C作分别AG//CD、CG//AD;AG、CG相交于G;则得□AGCD=>AC、DG互相平分=>FD=DG=>EF为ΔDBG的中位线=>BG=2EF∵BG>AB-AG=AB-CD=>2EF>AB
由题意,取BC边的中点G,连结EG、FG,则∵E、F、G分别是边BD、AC、BC的中点∴EG是△BCD的中位线,FG是△ABC的中位线∵EF+EG≥FG∴EF≥FG-EG=(1/2)(AB-CD)∴当
猜测问题是求证:ef=1/2*(ab+cd)如果没错可用辅助线和相似三角形来解
因为ABCD为矩形,EF分别是AB,CD的中点所以AE//DF且AE=DF所以AEFD为平心四边形又因为角A=90°所以AEFD为矩形
如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△O
再问:△ABE≌△DFC()后面括号里填什么再答:边角边定理忘了怎么用字母表示了再问:��SAS��再答:Ӧ���ǵġ���