如图在四边形abcd中efgh分别是abcdacbd的中点,是判断四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:58:22
∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH‖BD,EH=1/2BD同理FG‖BD,FG=1/2BD∴EH‖FG,EH=FG∴平行四边形EHGF∴任意四边形的中点四边形的形状都是
做BD的辅助线连接,有题目可以得出,证明EFGH为平行四边形,只要证明四边形的两边是平行的就行了.\x0d在三角形ABD中,E,H分别为AB,AD,的中点,有三角形中点线证明可得,EH是平行于BD的,
证明:连接AC、BD因为EFGH是中点所以:EH=FG=1/2*BDHG=EF=1/2*AC(三角形中位线)对边分别相等,这个图形是平行四边形再问:我们还没学到中位线,可以用其他方法吗?再答:中三绝不
我先写,等会照给你再问:快啊,我在考试再答:sorry,你问别人吧,乍一看会的,但是有想不起来了再答:暑假里考什么啊再问:我们还没放假啊再答:呃。。。。再答:快问别人再问:哎再答:把我这设为差评吧,我
已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH
1、正确2、错误是棱不是面FBFEFG3、正确4、正确
四边形EFGH是矩形证明:∵AB=AD,CB=CD∴A,C都在BC的垂直平分线上∴AC⊥BD∵,E,F,G,H分别是各边的中点易证EH‖FG,EH=FG∴四边形EFGH是平行四边形∵EF‖AC,EH‖
是菱形因为EFGH分别是四条边的中心,所以三角形AEHCHGDFGBEF四个三角形全等EHGHFGFE四边相等根据菱形性质四边相等的四边形是菱形你们教那么慢啊我们都到梯形了
分别连接AC和BD做辅助线∵E、F、G、H分别是AB、BC、CD、DA边上的中点∴HE‖BDGF‖BDHG‖ACEF‖AC∴HE‖GFHG‖EF∴四边形EFGH是平行四边形
首先你要知道两组对边分别相等的四边形是平行四边形三角形中位线等于底边长的一半证明:连接AC、BD因为E是AB中点,H是AD中点所以EH是三角形ABD的中位线所以EH=1/2BD同理可得GF是三角形DB
1矩形;2相等.第三问等一下再答:因为,AB‖CD,可得:∠DAB+∠ADC=180°;所以,∠F=180°-(∠DAF+∠ADF)=180°-(∠DAB+∠ADC)/2=90°。同理可得:四边形EF
证明:在平行四边形ABCD中,∠A=∠C(平行四边形的对边相等);又∵AE=CG,AH=CF(已知),∴△AEH≌△CGF(SAS),∴EH=GF(全等三角形的对应边相等);在平行四边形ABCD中,A
连接BD∵H为AD中点,E为AB中点∴EH为△ABD中位线∴EH∥BD且EH=1/2BD∵G为CD中点,F为BC中点∴FG为△DCF中位线∴FG∥BD且FG=1/2BD∴FG∥=EH∴四边形EFGH为
连接AC因为H、G,分别是AD,DC的中点所以HG∥½AC又因为E,F,分别是AB,BC的中点所以EF∥½AC所以GH平行且相等于EF所以四边形EFGH是平行四边形
此题运用中位线求解在三角形ACD中,GH是中位线,∴GH平行且等于1/2AD,同理,在三角形ABD中,EF是中位线,∴EF平行且等于1/2AD.∴GH平行且等于EF,∴四边形EFGF是平行四边形.
证明:∵截面EFGH平行于棱AB,∴FG∥AB,EH∥AB,∴FG∥EH,同理:EF∥GH,∴四边形EFGH是平行四边形.
证明:四边形EFGH是菱形.连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∴EF=1/2BD,EF∥BD,GH=1/2BD,GH∥BD,同理,FG=
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
那个104后面的c是什么意思再问:打错了再答:设AB=a,BC=d,BF=c,然后列式子,已知ab=104,ab:ac:bc=3:4:1,然后就可以得到3ac=4ab,4bc=ac,又知ab=104,