如图在四边形abcd中ac,BD对角线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:33:39
如图在四边形abcd中ac,BD对角线
如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在四边形ABCD中,角B=90度,AB=BC,AC=BD,把四边形ABCD绕点B顺时针方向旋转90度

∠DBD′=90°.∠ ACC′=45°+45°=90°⊿ABC为等腰直角三角形.

如图,已知在平行四边形ABCD中,DE⊥AC,BF⊥AC.证明,四边形DEBF为平行四边形.八

首先先证明那两个直角三角形全等然后DE和BF平行且相等所以就是个平行四边形

.如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,

根据公式S△ADC=(AC*AD*sin∠DAC)/2因为,AC=7,AD=6,S△ADC=(15√30)/2所以sin∠DAC=(5√30)/14因为AC平分∠DAB所以∠CAD=∠BAC所以sin

如图,在四边形abcd中,ac⊥bc,ad⊥bd,ac=bd,说明△cde是等腰三角形

因为ac⊥bc,ad⊥bd所以∠adb=∠bca=90°又因为ac=bd,ab=ba所以△abd≌△abc(HL)所以ad=bc所以△aed≌△bce(AAS)所以de=ce所以△cde是.加分

已知:如图,在四边形ABCD中,AC平分∠DAB,AD=DC≠AB.

因为AC平分角DAB且AD=DC,所以角DCA=角CAB所以DC//AB因为点P是AB的中点且点P到AC和BD的距离相等所以AO=BO所以三角形AOB为等腰三角形所以角CAB=∠DBA根据边角边,可证

如图,在四边形ABCD中,AC平分∠DAB,AB=3,求ABCD的周长

平行四边形ABCD?平行四边形ABCD中,AC平分∠DAB,AC平分∠DCB,三角形ABC和三角形ADC均为等腰三角形,AB=CB,AD=CD;又因为是平行四边形ABCD,AD=BC,所以平行四边形A

如图,在四边形ABCD中,AC平分角BAD,CE垂直AB,垂

解题思路:构造全等三角形进行证明.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/

如图在四边形ABCD中AC平分角DAB

证明:∵AC平分∠DAB(1)      ∴∠DAC=∠BAC      &nb

如图,在凸四边形ABCD中,已知AB+BD≤AC+CD

思路正确,有理有据,得以顺利证明.不过,就是要把【解】写成【证明】.

已知:如图,在四边形ABCD中,AD‖BC,BD垂直平分AC.求证:四边形ABCD是菱形.

AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形

已知如图:在四边形ABCD中,C是BD边的中点,AC平分∠B

解题思路:题没有写完整,请在下面补充完整解题过程:题没有写完整,请在下面补充完整

\(^o^)/~阅读材料:如图2,四边形ABCD中,对角线AC⊥BD,垂足为P.求证:四边形ABCD面积=1/2AC*B

1、由上面的结论AC⊥BD所以面积=AC*BD/2=242、等腰梯形AB=CD角DAB=ADCAD是公共边所以三角形ADB和DAC全等所以角ABP=DCP同理,角BAP=CDP又AB=CD所以三角形A

(2012•徐汇区二模)如图,在四边形ABCD中,AD=CD,AC平分∠DAB,AC⊥BC,∠B=60°.

证明:(1)∵AD=CD(已知),∴∠DCA=∠DAC(等边对等角);∵AC平分∠DAB(已知),∴∠DAC=∠CAB(角平分线的性质),∴∠DCA=∠CAB(等量代换),∴DC∥AB(内错角相等,两

有关中位线的.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B

每次连接中点后得到的图形面积是原图形面积的一半,答案是S/2^n,S是原图形面积,也就是ab/2,最后应该是ab/2^(n+1)

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

如图,在梯形ABCD中,AD‖BC,AC=BD,求证:四边形ABCD是等腰梯形

过D作DE‖AC 交BC的延长线于E,因AD‖BC,得ACED是平行四边形,所以AE=DE,因为BD=AC,得BD=DE,∠DBC=∠DEB,而∠DEC=∠ACB,所以,∠DBC=∠ACB,

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD