如图在三角形abc中角c等90度点d在ac上角bdc等45度bd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 01:42:48
如图在三角形abc中角c等90度点d在ac上角bdc等45度bd
如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图 在三角形ABC中,角C等于90度DE是AB的垂直平分线,且角BAD:角CAD=3:1,则角B等

设∠CAD=X∵∠BAD:∠CAD=3:1,∠CAD=X∴∠BAD=3X∴∠CAB=∠CAD+∠BAD=4X∵DE垂直平分AB∴AD=BD∴∠B=∠BAD=3X∵∠C=90∴∠CAB+∠B=90∴4X

如图,在三角形ABC中,角C=90度,角CAB=60度

由题意可知BD=2DE=10cmCD=DE=5cm所以BC=CD+BD=5+10=15cm

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

如图在三角形ABC中,角C=90°,角A=22.5°.

连接BF,根据图可解∵∠A=22.5°且EF为垂直平分线,∴得∠A=∠FBA=22.5°,∠FBC=45°又∵∠C=90°,且∠CBF=∠CFB=45°∴BF=√2FC又∵BF=AF∴AF=√2FC分

题:如图,在三角形ABC中,角ABC=2角C,B

∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC

如图 在三角形abc中,角c等于90°,bc等于ac等于10,d是ab的中点ae等

利用边角边证明ecd和fbd是全等三角形,那么四边形的面积就是半个大三角形的面积,第二题就简单了,无论怎么移动,总是两两全等,但是为了稳妥,可以写出E,F分别与俩顶点重合的情况,思路就是这样…再问:请

如图,在Rt三角形ABC中,角C=90度,BD是三角形ABC的角平分线,求角CDB的度数

∠CDB的度数等于90°减去∠CBD的度数(即∠CBA度数的一半)再问:过程再答:���������û��������ݣ�ֻ����ô�㡣再问:啊对啊忘了打清楚角ABC=2角ABD平分角ABC角C=9

如图,在RT三角形ABC中,角C等于90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径

回答:设圆O与AB切于点D,与BC切于点E,与AC且于点F则AD=AF,CF=CE,BD=BE且AD+BD=cAF+CF=bCE+BE=a可得r=CE=CF=(a+b-c)/2再问:你给个图我再问:不

如图 在rt三角形abc中,角c等于45° 如图,在rt三角形abc中,角c等于45°,角cab的平

如图,在Rt三角形abc中,角c等于90度,角cab,角abc的角平分线ad,bd交与点o,求角adb的度数∵∠C=90°,∴∠BAC+∠ABC=90°,∵AD、BD分别平分∠BAC和∠ABC,∴∠B

如图,在三角形ABC中,角C等于90度,BD平分角ABC交AC于点D,过点D作DE垂直AB于E,且角A等于30度,BD等

三角形ADE和DEB全等.所以DA等于DB等于4.又因为三十度角所对直角边是斜边的一半.所以DE等于2.又因为DEB和DCB全等.所以DC等于DE等于2.所以AC等于AD加DC等于6.如果还有不清楚的

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

已知,在三角形ABC中,角C=90°,AC=4,BC=3.如图2,圆O1与圆O2是三角形ABC内互相外切的两个等圆,求这

(12-r)/20=2r/3r=36/37再问:为什么再答:O1O2C与BCA相似,O1O2/BC=O1C/ACO1O2=2rO1C=(4*3)/5-r=(12-5r)/5(12-5r)/20=2r/

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB