如图在三角形ABC中AM=MN=NC,EF为AB.BC中点,EM.FN的延长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:58:02
如图在三角形ABC中AM=MN=NC,EF为AB.BC中点,EM.FN的延长
如图,在三角形ABC中,M是AB上一点,AM=CM,N是AC的中点,MN平行于BC.

∵N是AC的中点,MN平行于BC∴MN是△ABC的中位线MN∥1/2BC∴AM=BM∵AM=CM∴AM=BM=CM所以△ABC是直角三角形,且AC⊥BC∵MN∥BC∴MN⊥AC由直角三角形的性质可以知

如图,在三角形ABC中,M是AB上一点,AM=CM,N是AC的中点,MN平行于BC.1 .MN垂直与AC吗?为什么

三个题的答案都在这里面,你自己挑出来吧!∵N是AC的中点,MN平行于BC∴MN是△ABC的中位线MN∥1/2BC∴AM=BM∵AM=CM∴AM=BM=CM所以△ABC是直角三角形,且AC⊥BC∵MN∥

如图,在△ABC中,AB=5,AC=3,AM平分BAC,CM⊥AM,N为BC中点,求MN的长

延长CM交AB于D,∵AM⊥CM,∴∠AMC=∠AMD,∵AM平分∠BAC,∴∠MAC=∠MAD,∵AM=AM,∴ΔAMC≌ΔAMD,∴DM=CM,AD=AC=3,M为CD中点,∵N为BC中点,∴MN

如图 在Rt三角形ABC中,∠C=90°,M是AB的中点,AM=AN,MN平行AC.

连接CM,则CM为斜边AB上的中线,就有:AM=CM,∠CAM=∠ACM.作图可知,点N和点C在斜边AB的两侧,已知,MN‖AC,可得:∠CAM=∠AMN.因为,AM=AN,所以,∠AMN=∠ANM;

如图,在三角形ABC中,AB=AC,MN是AB的垂直平分线

∵MN是AB的垂直平分线∴AN=NB∴三角形BNC的周长=BC+BN+NC=BC+AN+NC=BC+AC∵AB=AC∴三角形BNC的周长=BC+AC=AB+BC=10cm(2)三角形BNC的周长为20

如图 在RT三角形ABC中,∠C=90 ,M是AB的中点 ,AM=AN,MN平行于AC.

因角C=90,M为中点所CM=1\2AB=AM因AM=AN所CM=AN因MN平行于AC所ACMN为平行四边形所MN=AC

如图,在Rt三角形ABC中,角C=90°,M是AB中点,AM=AN,MN平行AC.

连结CM∵M是Rt△ABC的斜边AB上的中点∴CM=AM∴∠MAC=∠MCA∵NA=MA∴∠N=∠AMN∵MN//AC∴∠CAM=∠AMN∴∠AMC=∠NAM∴NA//MC∴四边形ACMN是平行四边形

已知:如图,在三角形ABC中,AM是边BC上的中线.求证:AM

延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM

如图,在RT三角形ABC中,角BAC=90度,M,N是边BC上的点,气BM=MN=NC,若AM=4,AN=3,则MN等于

作MM1垂直AB交AB于M1,作NN1垂直BC交BC于N1,设AM1=NN1=x,MM1=CN1=y,由题可得,x^2+(2y)^2=9,y^2+(2x)^2=16,两式联立可得x^2+y^2=5,所

如图Rt三角形ABC中∠C=90,点MN在AB上,且AM=AC BN=BC则∠MCN=?

∵∠ACB=90°,∴∠A+∠B=90°∵AM=AC,∴∠AMC=(180°-∠A)/2∵BN=BC,∴∠BNC=(180°-∠B)/2∴∠AMC+∠BNC=180°-(∠A+∠B)/2=135°,∴

如图,在三角形ABC中,BM、CN平分角ABC、角ACB的外角,AM垂直BM于M,AN垂直CN于N求证:MN=1/2(A

证明:延长AM交CB延长线于E,延长AN交BC延长线于F∵BM平分∠ABE,BM⊥AM∴AM=EM,AB=BE∴AM=AE/2∵CN平分∠ACF,CN⊥AN∴AN=FN,AC=CF∴AN=AF/2∴M

如图,在三角形ABC中,AB=AC,角BAC=90°,BD垂直MN,CE垂直MN

∵BD⊥MN,∴∠ABD+∠BAD=90°∵∠BAC=90°,∴∠BAD+∠CAE=90°∴∠ABD=∠CAE∵AB=AC,∠ADB=∠CEA=90°∴△ABD≌△CAE∴AD=CE,AE=BD∴DE

如图,在三角形ABC中,AB=AC,∠A=120º,AB的垂直平分线MN分别交BC.AB于点MN.求证:MN=

因为AB=AC,且∠A=120°,所以∠B=30°,又因为MN⊥AB,所以在直角△BNM中,MN=½BM(直角三角形中,30°所对的直角边等于斜边的一半),请采纳,谢谢.

如图,cd是三角形abc的中线,cn=mn,求证am=cb

作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=

如图,在三角形ABC中,∠C=90°,AM是三角形ABC中线,MN⊥AB于N.求证:AN²=BN²+

由题意可知△ANM△ACM△MNB为直角三角形,由勾股定理则有:AN²+MN²=AM^2=AC²+CM²①BM²=MN²+BN²②

如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.

1、∵∠C=90°∴∠MCA+∠BCN=90°∵AM⊥MN,BN⊥MN∴∠AMC=∠CNB=90°∴∠MAC+∠MCA=90°∴∠MAC=∠BCN在△AMC和△CNB中∠MAC=∠BCN∠AMC=∠C

如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:M

证明:∵AM⊥MN于M,BN⊥MN于N,∠C=90°,∴∠NBC+∠NCB=90°,∠MAC+MCA=90°,∠CBA+∠CAB=90°,∴∠ACM=∠CBN,∠NCB=∠MAC,在△ENC和△CMA

如图在三角形ABC中,角C=90度,AC=BC过点C在三角形ABC外作直线MN,AM垂直MN于M,BN垂直MN于N.

结论:MN=AM+BN因为∠ACB=90度,MN是条直线,所以∠ACM+∠NCB=90度又BN⊥MN,故在Rt△BNC中,∠CBN+∠NCB=90度所以,∠ACM=∠CBN又AM⊥MN,故而,在Rt△

如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.(1)求证:

由题知,∠ACB=∠AMN=∠BNM=90°,故∠MCA+∠NCB=90又∠MAC+∠CAB+∠CBA+∠CBN=180°,故∠MAC+∠CBN=90因AC=CB故△MAC≌△NCB故MC=BN,AM