如图在三角形abc中,∠ACB=90°,点D.E在AB上,且AF垂直平分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:09:08
如图在三角形abc中,∠ACB=90°,点D.E在AB上,且AF垂直平分
如图在三角形ABC中∠ACB=90,AD是角平分线CH是高,交AD于F 在三角形ABC中∠ACB=90,AD是角平分线,

AD是角平分线,DC=DE,CH是高,DE垂直于AB,CH平行DE,角CDA=90度-角CAD,角CFH=角AFH=90度-角BAD=90度-角CAD=角CDA,CF=CD=DE,四边形CDEF是菱形

如图在三角形abc中,cf平分角acb,ca等于cd

EF=0.5BD,因为已经的那两个条件,可以得出三角形ACF与三角形DCF全等.那么AF=FD,又因为AE=EB,所以EF是三角形ABD的中位线,所以EF=0.5BD.没学过中位线用三角形相似也可以得

如图,三角形ABC中,∠ACB=90°,点D.E在AB上,且

解题思路:利用等腰三角形性质解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,在RT三角形ABC中,∠ACB=90,AC=5,CB=12

证明:由于△ABC为直角三角形,且∠ACB=90°,且D在圆上则有AD为直径从而有∠AED=90°因为∠ACB=∠AED=90°,AD=AD,∠CAD=∠EAD所以△ACD全等于△AED所以AE=AC

如图,在三角形ABC中,∠ACB=90°,AC=BC,点D为AB的中点

⑴连接CD,∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵D为AB中点,∴AD=BD=CD,CD⊥AB,∠DCA=∠DBC=45°,在ΔDAE与ΔDCF中:DA=DC,∠A=∠DCF=45°

已知如图,在三角形ABC中,∠ACB=90°,将三角形ABC绕点C按顺时针方向旋转得三角形A'B

这图只有几粒米大.也无法放大.重新上传大一点图,亲

如图,已知在三角形ABC中,O为角ABC,角ACB平分线的交点

OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO

如图,在三角形ABC中,BI,CI分别平分 ∠ABC,∠ACB.

已知∠A=50°,那么∠ACB+∠ABC=130°,又BI,CI分别平分∠ABC,∠ACB,所以1/2(∠ACB+∠ABC)=65°那么在△BIC内,∠BIC=180°-65°=115°

已知:如图,在三角形ABC中,∠ACB=90°,CM是斜边AB上的中线,将三角形ACB绕点C按逆时针方向

∵△A1B1C为△ABC旋转所得∴△A1B1C≌△ABC∴∠B1A1C=∠A∵∠ACB=90°,CM是斜边AB上的中线∴CM=AM∴∠A=∠MCA,∠MCA+∠A1CB=90°∴∠B1A1C+∠A1C

如图,在Rt三角形ABC中,角ACB=90度

证明:∵∠ACB=90∴a²+b²=c²,S△ABC=a×b/2∵CD⊥AB∴S△ABC=c×h/2∴a×b/2=c×h/2∴a×b=c×h∴ab=ch∴1/a²

已知,如图,在三角形ABC中,角ACB=90度,AC=BC,

作AH//BC,延长EC交AH于H,连接CH,CEAH//BC∠EFG=∠GAH,AG=GF,∠EGF=∠AGH△EFG≌△AGH(ASA)EF=AH因BE=EF所以,BE=AGAC=BC,∠EBC=

如图,在三角形ABC中,∠ACB=90°,四边形ABDE,AGFC都是正方形,求证:BG=EC

证明:∵四边形ABDE,AGFC都是正方形∴AE=AB,AC=AG,∠EAB=∠CAG=90°∴∠EAB-∠CAB=∠CAG-∠CAB即∠EAC=∠BAG∴△EAC≌△BAG(SAS)∴BG=EC

如图,在三角形ABC中,BD,CE分别是角ABC.角ACB的平分线.

角B+角C=180-角A=180-xBDCE为角平分线角DBC+角ECB=1/2(角B+角C)=90-x/2角BPC=180-角DBC-角ECB=90+x/2望采纳

已知,如图在三角形ABC中,角ACB=90度

我会再问:快答案再答:在写再问:好快点再答:先采纳吧!再问:好了吗再问:好了吗

如图,已知∠ACB=∠DBC,且在三角形ABC中,AB=6,AC=8,要求三角形ABC全等于三角形DCB,则需

这道题不知解得正确与否∵∠ACB=∠DBC且AB=6,AC=8,BC为公共边已知一角和一边相等只有角边角,角角边,或边角边,由于角已经不可能,所以只有边角边(没有边边角,这种定理)所以是AB=BD=8

如图1-3-7所示,在三角形ABC中,角ACB=90°,

因为∠ACB=90°所以∠A+∠B=90°因为∠AFE=∠B所以∠A+∠AFE=90°所以∠AEF=90°因为CD垂直AB所以∠ADC=90°所以∠AEF=∠ADC所以EF∥CD