如图在△abc和△ade中点e在bc边上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:57:39
(1)证明:延长DM交BC于N,∵∠EDA=∠ABC=90°,∴DE∥BC,∴∠DEM=∠MCB,在△EMD和△CMN中∠DEM=∠NCMEM=CM∠EMD=∠NMC,∴△EMD≌△CMN,∴CN=D
(1)△ABC∽△ADE,△ABD∽△ACE(2分)(2)①证△ABC∽△ADE,∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.(4分)又∵∠ABC=∠ADE,∴
(1)AD=CF,DB=CF.(2)方法一:四边形DBCF是平行四边形.证明:△ADE绕点E顺时针旋转180°,得到△CFE,∴△ADE≌△CFE,∴AD=CF,∠A=∠ECF,∴AB∥CF,又∵D是
(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=12EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.(2分)同理可证:DM=12EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠B
相似因为∠BAD=∠CAE,所以∠BAC=∠DAE又因为∠ABC=∠ADE所以△ABC∽△ADE所以AD/AE=AB/AC在△ABD和△ACE中AD/AE=AB/AC,∠BAD=∠CAE所以△ABD∽
1.取BC的中点F,并连接DF、EF,则结合题意可以知道:△ADE≌△FDE≌△DBF≌△EFC,也就是说这4个三角形全等,那么这四个三角形的面积也相等.所以△ADE的面积的4倍就等于△ABC的面积,
用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2
因为AB=ACAD平分∠BAC,所以BD=CD因为CD=DBCE=EA所以DE//AB所以∠CED=∠CAB因为∠BAC=∠BAD+∠CAD∠CED=∠CAD+∠ADE所以∠CAD=∠ADE,所以△A
因为∠BAD=∠CAE,所以∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,因为AC=AE,∠C=∠E,∠BAC=∠DAE,由角边角定理,△ABC≌△ADE.
帮你找到原题了,真的一模一样http://www.qiujieda.com/math/167482/以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
连结AC、BD.∵PQ为△ABC的中位线,∴PQ=1/2AC.同理MN=1/2AC.∴MN=PQ,MN//PQ∴四边形PQMN为平行四边形.在△AEC和△DEB中,AE=DE,EC=EB,∠AED=6
平行四边形分别连接AC,BDP,N分别为AB,AD中点,M,Q分别为DC,BC中点所以PN,MQ分别平行于BD即PN,MQ平行连接AC,同理证明MN平行PQ
一,1.AD,DB2.DE平行且等于1/2BC△EAD与△ECF全等所以DF平行并等于BC故四边形DBCF是平行四边形二、∠ABD=2∠ADBRT△DAB∠ADB=30∠ABD=60剩下的用sinco
由已知可得:△ADE≌△CFE.∴∠ADE=∠F;DE=EF;∴AB∥CF∵点D,E分别是AB,AC边的中点,∴DE=BC/2;∴DE+EF=BC=DF;∴四边形DBCF是平行四边形.
(1)证明:在△ABC和△ADE中∠BAC=∠DAEAB=AD∠B=∠D,∴△ABC≌△ADE;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=75°,∴∠CAE=180°-∠C-∠AEC
(1)△ABE≌△ACB∵,△ADE、△ABC是等腰直角三角形,∴AB=ACAD=AE角BAC=∠EAD=45°∵AB=ACAD=AE角BAC=∠EAD=45°∴△ABE≌△ACB(SAS)(2)∵△
S△ABC/S△ADE=2*2/1=4/1即S△ABC=4S△ADE,四边形的面积就是△ABC和△ADE的差也是就是3个△ADE,SBCED-S△ADE=3S△ADE-S△ADE=2△ADE=6,S△
(1)∵∠BAD=∠CAE,∠DAC=∠DAC.∴∠BAC=∠DAE,又∵∠ABC=∠ADE.∴△ABC∽△ADE,(AA)∴AB:AC=AD:AE°∵∠BAD=∠CAE∴△ABD∽ACE(SAS)(